首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The catalytic activity in asymmetric transfer hydrogenation of ketones using octahedral and half-sandwich (η5-indenyl and η6-arene) ruthenium(II) complexes containing the chiral ligand (4S)-2-[(Sp)-2-(diphenylphosphino)ferrocenyl]-4-(isopropyl)oxazoline (FcPN) has been explored. Catalytic studies with complex fac-[RuCl22(P,N)-FcPN}(PMe3)2] (1) show excellent TOF values (9600 h−1). Experiments in the presence of free FcPN, which lead to an increase in conversion rates and ee values when the catalyst is complex [Ru(η5-C9H7){κ2(P,N)-FcPN}(PPh3)][PF6] (4) have been carried out. The characterization of the new complexes mer-trans-[RuCl2{P(OMe)3}22(P,N)-FcPN}] and of the water-soluble complexes fac- and mer-trans-[RuCl2(PTA)22(P,N)-FcPN}] is also reported.  相似文献   

2.
Ru(II) complexes of the general formula [RuCl2(′′)(L)] (1: ′N = Nb, L = MeOH; 2: ′N = Nb, L = CH3CN; 3: ′N = Nd, L = CH3CN; 4: ′N = Np, L = CH3CN), [Ru(p‐cymene)(a–b)Cl]Cl (5a: N Na = 2,2′‐bipyridine; 5b: N Nb = 4,4′‐dimethyl–2,2′‐bipyridine), [Ru(′′)(a–b)Cl]Cl (6a: ′N = Nb, a = 2,2′‐bipyridine; 6b: ′N = Nb, b = 4,4′‐dimethyl‐2,2′‐bipyridine; 7a: ′N = Nd, a = 2,2′‐bipyridine; 7b: ′N = Nd, b = 4,4′‐dimethyl‐2,2′‐bipyridine; 8a: ′N = Np, a = 2,2′‐bipyridine; 8b: ′N = Np, b = 4,4′‐dimethyl‐2,2′‐bipyridine) and [Ru(′′)(a)Cl]BF4 (9a: ′N = Nb; a = 2,2′‐bipyridine) were synthesized from the corresponding [RuCl2(p‐cymene)]2 dimer, ′′ and a–b ligands. The compounds were characterized by elemental analysis, IR and NMR. Complex 9a was studied by X‐ray diffraction, confirming its cationic‐mononuclear [RuCl(bb)(a)]+ nature. The synthesized Ru(II) complexes (1–8) were employed as catalysts for the transfer hydrogenation of ketones to secondary alcohols in the presence of KOH using 2‐propanol as a hydrogen source at 82°C. The rates of the transfer hydrogenation reactions strongly depended on the type of and ancillary ligands. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
4.
A convenient and general method of synthesis of binuclear ruthenium(II) pyridazine complex was reported. The synthesized complex was characterized by analytical and spectral methods. The structure of the complex was confirmed by X-ray diffraction technique and was found to be an efficient catalyst for the transfer hydrogenation of ketones with excellent conversions in the presence of isopropanol/KOH at 82 °C. The effect of solvents, bases, and different catalyst/substrate ratio for the reaction was also investigated.  相似文献   

5.
A new class of hemilabile unsymmetrical 2-(1-arylimino)-6-(pyzazol-1-yl)pyridine ligands and their ruthenium(II) and nickel(II) NNN complexes were synthesized. The Ru(II) complex catalysts have been fully characterized and exhibited good to excellent catalytic activity in the transfer hydrogenation (TH) of ketones in refluxing 2-propanol. These results have demonstrated rare examples of active ruthenium(II) NNN complex catalysts that do not feature a N-H functionality for TH of ketones.  相似文献   

6.
Neutral half‐sandwich η6p ‐cymene ruthenium(II) complexes of general formula [Ru(η6p ‐cymene)Cl(L)] (HL = monobasic O, N bidendate benzoylhydrazone ligand) have been synthesized from the reaction of [Ru(η6p ‐cymene)(μ‐Cl)Cl]2 with acetophenone benzoylhydrazone ligands. All the complexes have been characterized using analytical and spectroscopic (Fourier transform infrared, UV–visible, 1H NMR, 13C NMR) techniques. The molecular structures of three of the complexes have been determined using single‐crystal X‐ray diffraction, indicating a pseudo‐octahedral geometry around the ruthenium(II) ion. All the ruthenium(II) arene complexes were explored as catalysts for transfer hydrogenation of a wide range of aromatic, cyclic and aliphatic ketones with 2‐propanol using 0.1 mol% catalyst loading, and conversions of up to 100% were obtained. Further, the influence of other variables on the transfer hydrogenation reaction, such as base, temperature, catalyst loading and substrate scope, was also investigated.  相似文献   

7.
The complex trans,cis‐[RuCl2(PPh3)2(ampi)] (2) was prepared by reaction of RuCl2(PPh3)3 with 2‐aminomethylpiperidine(ampi) (1). [RuCl2(PPh2(CH2)nPPh2)(ampi) (n = 3, 4, 5)] (3–5) were synthesized by displacement of two PPh3 with chelating phosphine ligands. All complexes (2–5) were characterized by 1 H, 13C, 31P NMR, IR and UV‐visible spectroscopy and elemental analysis. They were found to be efficient catalysts for transfer hydrogen reactions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Complex RuCl2(PPh3)(iBu-BTP) (5) was synthesized by the reaction of 2,6-bis(5,6-bis(iso-butyl)-1,2,4-triazin-3-yl)pyridine (iBu-BTP) and RuCl2(PPh3)3 in refluxing toluene, and its molecular structure was confirmed by X-ray crystallographic determination. Complex 5 was applied as a catalyst for transfer hydrogenation of ketones and exhibited catalytic activity comparable to RuCl2(PPh3)(Me4BPPy) (1) (Me4BPPy = bis(3,5-dimethylpyrazol-1-yl)pyridine) in some cases. The difference between the catalytic activity of 5 and 1 is attributed to the significantly different arrangement and positions of the PPh3 and chlorides and also to the different electron density on the N-heterocycles. Complex 1 exhibited good to excellent catalytic activity in hydrogenation of ketones under mild conditions. These results have suggested new applications of iBu-BTP and Me4BPPy as promising planar tridentate pseudo-N3 ligands to construct highly active transition-metal catalysts.  相似文献   

9.
A series of piperidoimidazolinium salts which differ in the chain lengths (butyl, octyl, dodecyl, octadecyl) and their Pd–N‐heterocyclic carbene complexes with pyridine were synthesized and characterized using elemental analysis and spectroscopic methods. The effects of these ligands on catalyst activation and the performance of the complexes were studied in Suzuki–Miyaura reactions of arylboronic acid with aryl chlorides. The complex with the ligand having the longest chain length was found to be most active. The results demonstrated that the length of the alkyl chain of the piperidoimidazolin‐2‐ylidene controlled the dispersion and composition of the nanoparticles and it affected the catalytic activity. The impact of alkyl chain length of piperidoimidazolin‐2‐ylidene on the Suzuki–Miyaura reactions of arylboronic acid with aryl halides was systematically investigated.  相似文献   

10.
Two novel versatile tridendate aminophosphine–phosphinite and phosphinite ligands were prepared and their trinuclear neutral ruthenium(II) dichloro complexes were found to be effective catalysts for the transfer hydrogenation of various ketones in excellent conversions up to 99% in the presence of 2‐propanol/NaOH in 0.1 M isopropanol solution. Particularly, [Ru3(PPh2OC2H4)2 N–PPh26p‐cymene)3Cl6] acts as an excellent catalyst giving the corresponding alcohols in excellent conversion up to 99% (turnover frequency ≤ 1176 h?1). A comparison of the catalytic properties of the complexes is also discussed briefly. Furthermore, the structures of these ligands and their corresponding complexes have also been clarified using a combination of multinuclear NMR spectroscopy, infrared spectroscopy and elemental analysis. 1H–13C HETCOR or 1H–1H COSY correlation experiments were used to confirm the spectral assignments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Novel water‐soluble analogues of Noyori's (R,R)‐N‐(p‐tolylsulfonyl)‐1,2‐diphenylethyl‐ enediamine and Knochel's (R,R)‐N‐(p‐tolylsulfonyl)‐1,2‐diaminocyclohexane, containing an additional quaternary ammonium group, have been synthesized. The ruthenium catalysts prepared in situ by reacting chiral monosulfonamides with [RuCl2(p‐cymene)]2 afforded high conversion rates and enantiomeric excess (ee) values in the asymmetric transfer hydrogenation of aromatic ketones in aqueous HCOONa. Furthermore, the catalyst could be easily recovered and reused at least five times without obvious loss of ee value. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:505–514, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20641  相似文献   

12.
2,6‐Diacetylpyridinebis (2,6‐diisopropylani) iron dichloride, a late‐transition metal catalyst for olefin polymerization, was supported on SBA‐15 successfully and the property of the supported catalyst was carefully studied. Ethylene polymerization was systematically investigated in the presence of MAO under various conditions employing this type of catalyst system. In general, after support, a decrease in the catalytic activity was observed and higher molecular weight and fibrous morphology of polyethylene were obtained. The “extrusion polymerization” phenomenon was observed in ethylene polymerization by using the supported catalyst system. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4830–4837, 2004  相似文献   

13.
Recently, we observed that the enantiopure Lambda form of the tributylammonium salt of the chiral anion tris[tetrachlorobenzene-1,2-bis(olato)]phosphate, also named Trisphat, was able to induce an efficient resolution of a Delta,Lambda racemic mixture of cis-[Ru(dmp)2(NCCH3)2](PF6)2 (dmp=2,9-dimethyl-1,10-phenanthroline) due to the spontaneous and selective precipitation of the heterochiral pair [Delta-Ru(dmp)2(CH3CN)2][Lambda-Trisphat]2. We report here that the combination of such a stereoselective precipitation process and irradiation results in the quantitative conversion of the initial [Ru(dmp)2(NCCH3)2]2+ racemate into only one of the two enantiomers. This is the first example in inorganic chemistry of an asymmetric transformation that leads to a chiral complex with no chiral ligand. Finally, three new racemic ruthenium bis(diimine) complexes, namely [Ru(dmp)2(NCCH3)Py](PF6)2 (Py=pyridine), [Ru(dmp)2(1,3-diaminopropane)](PF6)2, and [Ru(dmp)2(ethylenediamine)](PF6)2 were synthesized. For all of them, crystallization-induced asymmetric transformation proved to be an efficient way of obtaining the corresponding optically active chiral-at-metal complexes in high yields and with excellent stereoselectivities.  相似文献   

14.
Two new half‐sandwich η5‐Cp*–rhodium(III) and η5‐Cp*–ruthenium(II) complexes have been prepared from corresponding bis(phosphino)amine ligands, thiophene‐2‐(N,N‐bis(diphenylphosphino)methylamine) or furfuryl‐2‐(N,N‐bis(diphenylphosphino)amine). Structures of the new complexes have been elucidated by multinuclear one‐ and two‐dimensional NMR spectroscopy, elemental analysis and IR spectroscopy. These Cp*–rhodium(III) and Cp*‐ruthenium(II) complexes bearing bis(phosphino)amine ligands were successfully applied to transfer hydrogenation of various ketones by 2‐propanol. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The synthesis and X‐ray crystal structure of two new multinuclear thorium complexes are reported. The tetranuclear μ4‐oxo cluster complex Th44‐O)(μ‐Cl)2I62(O,O’)‐μ‐O(CH2)2OCH3]6 and the dinuclear complex Th2I52(O,O’)‐μ‐O(CH2)2OCH3]3(DME) (DME=dimethoxyethane) are formed by C?O bond activation of 1,2‐dimethoxyethane (DME) mediated by thorium iodide complexes.  相似文献   

16.
17.
Thermoregulated phase‐transfer catalysis for the transfer hydrogenation of 2‐octanone in 2‐propanol/H2O biphasic media was achieved with ruthenium‐bearing microgel‐core star polymers with amphiphilic, thermosensitive poly(ethylene glycol) (PEG) arms [Ru(II)‐PEG star], which were directly prepared by the ruthenium‐catalyzed living radical polymerization in conjunction with a phosphine ligand‐carrying styrene derivative. The star polymers were first placed in the aqueous (lower) layer at room temperature and immediately moved into the organic (upper) layer at 100 °C, and once again, moved down to the aqueous layer (lower) upon cooling the solution to room temperature. The Ru(II)‐PEG star catalyst was clearly superior to the original Ru(II) catalyst and related non‐microgel catalysts [Ru(II)‐PEG block] in terms of activity and recovery/recycle, due to the unique designer structure of the microgel‐core star polymers. Other substrates (less hydrophobic alkyl ketones and aromatic ketone) were also efficiently hydrogenated into the corresponding sec‐alcohols with the star catalyst in aqueous media. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 373–379, 2010  相似文献   

18.
A series of new arene ruthenium(II) complexes were prepared by reaction of ruthenium(II) precursors of the general formula [(η6-arene)Ru(μ-Cl)Cl]2 with N,N′-bidentate pyridyl-imine ligands to form complexes of the type [(η6-arene)RuCl(C5H4N-2-CH=N-R)]PF6, with arene = C6H6, R = iso-propyl (1a), tert-butyl (1b), cyclohexyl (1c), cyclopentyl (1d) and n-butyl (1e); arene = p-cymene, R = iso-propyl (2a), tert-butyl (2b). The complexes were fully characterized by 1H NMR and 13C NMR, UV–Vis and IR spectroscopies, elemental analyses, and the single-crystal X-ray structures of 2a and 2b have been determined. The single-crystal molecular structure revealed both compounds with a pseudo-octahedral geometry around the Ru(II) center, normally referred to as a piano stool conformation, with the pyridyl-imine as a bidentate N,N ligand. The activity of all complexes in the transfer hydrogenation of cyclohexanone in the presence of NaOH and iso-propanol is reported, the compounds showing turnover numbers of close to 1990 and high conversions. Complex 2b was also shown to be very effective for a range of aliphatic and cyclic ketones, giving conversions of up to 100 %.  相似文献   

19.
Two new aminophosphines – furfuryl‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3O] ( 1 ) and thiophene‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3S] ( 2 ) – were prepared by the reaction of chlorodicyclohexylphosphine with furfurylamine and thiophene‐2‐methylamine. Reaction of the aminophosphines with [Ru(η6p‐cymene)(μ‐Cl)Cl]2 or [Ru(η6‐benzene)(μ‐Cl)Cl]2 gave corresponding complexes [Ru(Cy2PNHCH2–C4H3O)(η6p‐cymene)Cl2] ( 1a ), [Ru(Cy2PNHCH2–C4H3O)(η6‐benzene)Cl2] ( 1b ), [Ru(Cy2PNHCH2–C4H3S)(η6p‐cymene)Cl2] ( 2a ) and [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] ( 2b ), respectively, which are suitable catalyst precursors for the transfer hydrogenation of ketones. In particular, [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] acts as a good catalyst, giving the corresponding alcohols in 98–99% yield in 30 min at 82 °C (up to time of flight ≤ 588 h?1). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Reported herein is an easy‐to‐prepare novel heterogeneous catalyst of platinum complexes bearing binary ligands of bidentate naphthalenolimine and cyclo‐1,5‐octadiene that are anchored onto mesoporous silica SBA‐15. The presence of the binary ligands not only stabilized the platinum, but also enabled the platinum atoms to form nanoclusters with diameters of ca 1 nm, and led to high platinum loading (8.69 wt%). Moreover, the platinum catalyst exhibited high catalytic activity towards hydrosilylation of terminal alkenes and styrene with silanes under mild and solvent‐free conditions, with excellent regioselectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号