首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficient and effective storage of electrical energy with batteries is key for sustainable energy supply and emission free mobility. At present, lithium ion technology is the “best” high energy density battery and the first choice for use in electric vehicle applications, whereas for stationary storage of electricity a large number of battery technologies, including lithium ion batteries (LIB) , are in competition to each other. Even though the LIB is one step ahead of other battery technologies at the moment, this race is still open. Several new battery chemistries, such as lithium/sulfur, metal/air, sodium, magnesium and dual ion battery technologies are discussed as replacement or complementary technologies to lithium ion. The hope for improved and better battery technologies of the future is still high.  相似文献   

2.
3.
4.
The ever‐increasing demand for rechargeable batteries induces significant pressure on the worldwide metal supply, depleting resources and increasing costs and environmental concerns. In this context, developing the chemistry of anion‐inserting electrode organic materials could promote the fabrication of molecular (metal‐free) rechargeable batteries. However, few examples have been reported because little effort has been made to develop such anionic‐ion batteries. Here we show the design of two anionic host electrode materials based on the N‐substituted salts of azaaromatics (zwitterions). A combination of NMR, EDS, FTIR spectroscopies coupled with thermal analyses and single‐crystal XRD allowed a thorough structural and chemical characterization of the compounds. Thanks to a reversible electrochemical activity located at an average potential of 2.2 V vs. Li+/Li, the coupling with dilithium 2,5‐(dianilino)terephthalate (Li2DAnT) as the positive electrode enabled the fabrication of the first all‐organic anionic rechargeable batteries based on crystallized host electrode materials capable of delivering a specific capacity of ≈27 mAh/gelectrodes with a stable cycling over dozens of cycles (≈24 Wh/kgelectrodes).  相似文献   

5.
6.
The flexible Li‐O2 battery is suitable to satisfy the requirements of a self‐powered energy system, thanks to environmental friendliness, low cost, and high theoretical energy density. Herein, a flexible porous bifunctional electrode with both electrocatalytic and photocatalytic activity was synthesized and introduced as a cathode to assemble a high‐performance Li‐O2 battery that achieved an overpotential of 0.19 V by charging with the aid of solar energy. As a proof‐of‐concept application, a flexible Li‐O2 battery was constructed and integrated with a solar cell via a scalable encapsulate method to fabricate a flexible self‐powered energy system with excellent flexibility and mechanical stability. Moreover, by exploring the evolution of the electrode morphology and discharge products (Li2O2), the charging process of the Li‐O2 battery powered by solar energy and solar cell was demonstrated.  相似文献   

7.
8.
9.
Zinc‐based electrochemistry is attracting significant attention for practical energy storage owing to its uniqueness in terms of low cost and high safety. However, the grid‐scale application is plagued by limited output voltage and inadequate energy density when compared with more conventional Li‐ion batteries. Herein, we propose a latent high‐voltage MnO2 electrolysis process in a conventional Zn‐ion battery, and report a new electrolytic Zn–MnO2 system, via enabled proton and electron dynamics, that maximizes the electrolysis process. Compared with other Zn‐based electrochemical devices, this new electrolytic Zn–MnO2 battery has a record‐high output voltage of 1.95 V and an imposing gravimetric capacity of about 570 mAh g?1, together with a record energy density of approximately 409 Wh kg?1 when both anode and cathode active materials are taken into consideration. The cost was conservatively estimated at <US$ 10 per kWh. This result opens a new opportunity for the development of Zn‐based batteries, and should be of immediate benefit for low‐cost practical energy storage and grid‐scale applications.  相似文献   

10.
Safety concerns are impeding the applications of lithium metal batteries. Flame‐retardant electrolytes, such as organic phosphates electrolytes (OPEs), could intrinsically eliminate fire hazards and improve battery safety. However, OPEs show poor compatibility with Li metal though the exact reason has yet to be identified. Here, the lithium plating process in OPEs and Li/OPEs interface chemistry were investigated through ex situ and in situ techniques, and the cause for this incompatibility was revealed to be the highly resistive and inhomogeneous interfaces. Further, a nitriding interface strategy was proposed to ameliorate this issue and a Li metal anode with an improved Li cycling stability (300 h) and dendrite‐free morphology is achieved. Meanwhile, the full batteries coupled with nickel‐rich cathodes, such as LiNi0.8Co0.1Mn0.1O2, show excellent cycling stability and outstanding safety (passed the nail penetration test). This successful nitriding‐interface strategy paves a new way to handle the incompatibility between electrode and electrolyte.  相似文献   

11.
Of the various beyond‐lithium‐ion battery technologies, lithium–sulfur (Li–S) batteries have an appealing theoretical energy density and are being intensely investigated as next‐generation rechargeable lithium‐metal batteries. However, the stability of the lithium‐metal (Li°) anode is among the most urgent challenges that need to be addressed to ensure the long‐term stability of Li–S batteries. Herein, we report lithium azide (LiN3) as a novel electrolyte additive for all‐solid‐state Li–S batteries (ASSLSBs). It results in the formation of a thin, compact and highly conductive passivation layer on the Li° anode, thereby avoiding dendrite formation, and polysulfide shuttling. It greatly enhances the cycling performance, Coulombic and energy efficiencies of ASSLSBs, outperforming the state‐of‐the‐art additive lithium nitrate (LiNO3).  相似文献   

12.
Aqueous Na‐ or K‐ion batteries could virtually eliminate the safety and cost concerns raised from Li‐ion batteries, but their widespread applications have generally suffered from narrow electrochemical potential window (ca. 1.23 V) of aqueous electrolytes that leads to low energy density. Herein, by exploring optimized eutectic systems of Na and K salts with asymmetric imide anions, we discovered, for the first time, room‐temperature hydrate melts for Na and K systems, which are the second and third alkali metal hydrate melts reported since the first discovery of Li hydrate melt by our group in 2016. The newly discovered Na‐ and K‐ hydrate melts could significantly extend the potential window up to 2.7 and 2.5 V (at Pt electrode), respectively, owing to the merit that almost all water molecules participate in the Na+ or K+ hydration shells. As a proof‐of‐concept, a prototype Na3V2(PO4)2F3|NaTi2(PO4)3 aqueous Na‐ion full‐cell with the Na‐hydrate‐melt electrolyte delivers an average discharge voltage of 1.75 V, that is among the highest value ever reported for all aqueous Na‐ion batteries.  相似文献   

13.
14.
The utilization of CO2 in Li‐CO2 batteries is attracting extensive attention. However, the poor rechargeability and low applied current density have remained the Achilles’ heel of this energy device. The gel polymer electrolyte (GPE), which is composed of a polymer matrix filled with tetraglyme‐based liquid electrolyte, was used to fabricate a rechargeable Li‐CO2 battery with a carbon nanotube‐based gas electrode. The discharge product of Li2CO3 formed in the GPE‐based Li‐CO2 battery exhibits a particle‐shaped morphology with poor crystallinity, which is different from the contiguous polymer‐like and crystalline discharge product in conventional Li‐CO2 battery using a liquid electrolyte. Accordingly, the GPE‐based battery shows much improved electrochemical performance. The achieved cycle life (60 cycles) and rate capability (maximum applied current density of 500 mA g−1) are much higher than most of previous reports, which points a new way to develop high‐performance Li‐CO2 batteries.  相似文献   

15.
Safety concerns pose a significant challenge for the large‐scale employment of lithium–sulfur batteries. Extremely flammable conventional electrolytes and dendritic lithium deposition cause severe safety issues. Now, an intrinsic flame‐retardant (IFR) electrolyte is presented consisting of 1.1 m lithium bis(fluorosulfonyl)imide in a solvent mixture of flame‐retardant triethyl phosphate and high flashpoint solvent 1,1,2,2‐tetrafluoroethyl‐2,2,3,3‐tetrafluoropropyl (1:3, v/v) for safe lithium–sulfur (Li?S) batteries. This electrolyte exhibits favorable flame‐retardant properties and high reversibility of the lithium metal anode (Coulombic efficiency >99 %). This IFR electrolyte enables stable lithium plating/stripping behavior with micro‐sized and dense‐packing lithium deposition at high temperatures. When coupled with a sulfurized pyrolyzed poly(acrylonitrile) cathode, Li?S batteries deliver a high composite capacity (840.1 mAh g?1) and high sulfur utilization of 95.6 %.  相似文献   

16.
Organic room‐temperature sodium‐ion battery electrodes with carboxylate and carbonyl groups have been widely studied. Herein, for the first time, we report a family of sodium‐ion battery electrodes obtained by replacing stepwise the oxygen atoms with sulfur atoms in the carboxylate groups of sodium terephthalate which improves electron delocalization, electrical conductivity and sodium uptake capacity. The versatile strategy based on molecular engineering greatly enhances the specific capacity of organic electrodes with the same carbon scaffold. By introducing two sulfur atoms to a single carboxylate scaffold, the molecular solid reaches a reversible capacity of 466 mAh g−1 at a current density of 50 mA g−1. When four sulfur atoms are introduced, the capacity increases to 567 mAh g−1 at a current density of 50 mA g−1, which is the highest capacity value reported for organic sodium‐ion battery anodes until now.  相似文献   

17.
A tactile, UV‐ and solar‐light multi‐sensing smart rechargeable Zn–air battery (SRZAB) with excellent cell performance, self‐conditioned charge/discharge, and reliable environmental responsivity is made by using multi‐scale conjugated block‐copolymer–carbon nanotube–polyurethane foam assemblies as both a self‐standing air electrode and a sensing unit. Multiscale engineering fully exploits the multi‐synergy among components to endow the newly designed metal‐free multi‐sensing air electrode (MSAE) with bifunctional oxygen reduction and evolution activities, pressure sensitivity, and photothermal and photoelectric conversion functions in a single electrode, enabling effective regulation of interface properties, electronic/ionic transport, or redox reactions in SRZAB upon various stimulations and establishing multiple working principles. MSAE‐driven SRZAB can be used as compressible power sources, self‐powered pressure and optical sensors and light‐to‐electrochemical energy systems.  相似文献   

18.
We demonstrate a novel crosslinked disulfide system as a cathode material for Li‐S cells that is designed with the two criteria of having only a single point of S−S scission and maximizing the ratio of S−S to the electrochemically inactive framework. The material therefore maximizes theoretical capacity while inhibiting the formation of polysulfide intermediates that lead to parasitic shuttle. The material we report contains a 1:1 ratio of S:C with a theoretical capacity of 609 mAh g−1. The cell gains capacity through 100 cycles and has 98 % capacity retention thereafter through 200 cycles, demonstrating stable, long‐term cycling. Raman spectroscopy confirms the proposed mechanism of disulfide bonds breaking to form a S−Li thiolate species upon discharge and reforming upon charge. Coulombic efficiencies near 100 % for every cycle, suggesting the suppression of polysulfide shuttle through the molecular design.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号