首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
《Analytical letters》2012,45(11):2285-2295
Abstract

Multi‐walled carbon nanotubes (MWNTs) were used as sorbent for flow injection (FI) on‐line microcolumn preconcentration coupled with flame atomic absorption spectrometry (FAAS) for determination of trace cadmium and copper in environmental and biological samples. Effective preconcentration of trace cadmium and copper was achieved in a pH range of 4.5–6.5 and 5.0–7.5, respectively. The retained cadmium and copper were efficiently eluted with 0.5 mol L?1 HCl for on‐line FAAS determination. The MWNTs packed microcolumn exhibited fairly fast kinetics for the adsorption of cadmium and copper, permitting the use of high sample flow rates up to at least 7.8 mL min?1 for the FI on‐line microcolumn preconcentration system without loss of the retention efficiency. With a preconcentration time of 60 sec at a sample loading flow rate of 4.3 mL min?1, the enhancement factor was 24 for cadmium and 25 for copper at a sample throughput of 45 h?1. The detection limits (3σ) were 0.30 and 0.11 µg L?1 for Cd and Cu, respectively. The precision (RSD) for 11 replicate measurements was 2.1% at the 10‐µg L?1 Cd level and 2.4% at the 10‐µg L?1 Cu level. The developed method was successfully applied to the determination of trace Cd and Cu in a variety of environmental and biological samples.  相似文献   

2.
《Analytical letters》2012,45(15):2464-2477
An efficient solid phase extractive preconcentration/separation method was developed for the trace determination of herbicides in aqueous samples using Amberlite XAD-4 resin as the adsorbent. The retained herbicides were eluted with methanol at a flow rate of 1.0 mL min?1 and determined by HPLC-DAD (wavelength of 220 nm) using water (pH:4.7, phosphoric acid) and methanol (ratio 35:65) as the mobile phase with a flow rate of 1.0 mL min?1. Quantitative recoveries of simazine, atrazine and its metabolities were achieved at optimized analysis conditions that included 0.75 g of resin; a pH of 3.0; an eluent volume of 3.0 mL; an eluent flow rate of 1.0 mL min?1; and a sample flow rate of 4.0 mL min?1. The limits of detection, preconcentration factor, and linear ranges for the herbicides were 0.084–0.121 µgL?1, 1000, and 0.5–20 mg L?1, respectively. The performance of the method was evaluated by analysis of spiked water samples. The recoveries of simazine, atrazine and their metabolities were found to be quantitative (99.6–104.8%) with RSDs of 2.2–4.8% and 2.8–4.7% for intra-day and inter-day precision, respectively. The proposed method was successfully applied for trace determination of studied analytes in waste water, apple juice, and red wine samples.  相似文献   

3.
SPE using a cross‐linked starch‐based polymer (CSMDI) as an adsorbent for the determination of four nitrophenols at trace levels from aqueous solution was investigated. The CSMDI was synthesized from native starch using 4,4′‐methylenebisphenyldiisocyanate as a cross‐linking agent in dry DMF. Parameters affecting the extraction efficiency including the pH of the water sample, type of eluent and its volume, flow rate, sample volume, and methanol content were investigated and optimized. The optimized results exhibited excellent linear relationships (R2 > 0.995) for all the nitrophenols over the range of 2.0–200 ng/mL, with the RSD values in the range of 2.9–5.7% (n = 5). The LODs ranged from 0.08–0.34 ng/mL (S/N = 3) for the four nitrophenols tested under optimum conditions. The developed method has been successfully applied for the analysis of several real environmental water samples including tap, river, and reservoir water. These results indicated that the CSMDI had a tremendous potential for the enrichment and determination of nitrophenols at trace levels in environmental water samples.  相似文献   

4.
In this study, a simultaneous determination method for nitrogen‐containing polycyclic aromatic hydrocarbons including 7‐methylquinoline, acridine, 5,6‐benzoquinoline, carbazole, and 9‐methylcarbazole was developed. This method is based on a micro‐solid phase extraction using TiO2 nanotube arrays as an adsorbent in combination with HPLC. Some factors that had an effect on the enrichment were optimized, such as sample pH, surfactant concentration, ion strength, type of eluent, equilibrium time, and desorption time. Under the optimized conditions, the linear ranges and LODs were in the range of 0.01–100 and 0.0035–0.81 μg/L, respectively. The precisions of the proposed method were <9.51% (RSD, n = 6). The developed method was validated with four real samples, and the spiked recoveries were in the range of 77–109.6%. All these results demonstrated that this novel micro‐solid‐phase extraction technique was a reliable alternative to conventional preconcentration method for the extraction and analysis of such nitrogen‐containing polycyclic aromatic hydrocarbons in complex samples.  相似文献   

5.
Tao Zhu  Kyung Ho Row 《中国化学》2010,28(8):1463-1468
A simple reversed‐phase high performance liquid chromatography (RP‐HPLC) method was developed to determine the level of caffeine and theophylline in human plasma samples. The sample clean‐up step involved the on‐line solid‐phase extraction (SPE) of the analytes from plasma samples into a weak cation monolithic column using a column switching system. Separation was performed on a C18 column (5 µm, 150 mm×4.6 mm) with ultraviolet detection at 274 nm. The mobile phase consisted of methanol‐water (32/68, V/V) under isocratic conditions at a flow rate of 0.6 mL·min−1. The measured concentration of caffeine and theophylline showed a good linear relationship over the concentrations range, 0.1–80.0 µg·mL−1. The absolute recoveries ranged from 77.10% to 85.39%, and the inter‐day and intra‐day relative standard deviations (RSD) were all less than 5%. This method avoids a tedious pretreatment and provides an economic, repeatable and effective method for assaying trace drugs in biological samples.  相似文献   

6.
ABSTRACT

In this study, a simple and efficient solid phase extraction procedure was developed for simultaneous separation and preconcentration of Ba, Cd, Co, Cu, Mn and Ni. The methodology was based on preconcentration of the target analytes on N,N’-bis(4-methoxysalicylidene)-1,3-propanediamine modified silica gel prior to inductively coupled plasma optic emission spectrometry detection. The experimental conditions were as follows: pH of sample 5.00; sample and eluent flow rates 3 mL min?1; sample volume 25 mL; eluent 0.5 mol L?1 HNO3; eluent volume 3.0 mL. Preconcentration factor was achieved as 33.3 for Ba, Co, Mn; 83.3 for Cd, Ni; 166.7 for Cu. Limits of detection were found as 0.33, 0.26, 0.27, 0.36, 0.27 and 0.19 µg L?1 for Ba, Cd, Co, Cu, Mn and Ni, respectively. The relative standard deviations of 2.6–3.8% were obtained via nine parallel analyses. The suggested procedure was successfully validated by the analysis of TMDA-53.3 Lake Ontario water and ERM-CA022a soft drinking water certified reference materials and applied to various natural water samples.  相似文献   

7.
Several commercial immobilized metal affinity chromatography sorbents were evaluated in this study for the analysis of two small peptide fragments of the amyloid β‐protein (Aβ) (Aβ(1–15) and Aβ(10–20) peptides) by on‐line immobilized metal affinity SPE‐CE (IMA‐SPE‐CE). The performance of a nickel metal ion (Ni(II)) sorbent based on nitrilotriacetic acid as a chelating agent was significantly better than two copper metal ion (Cu(II)) sorbents based on iminodiacetic acid. A BGE of 25 mM phosphate (pH 7.4) and an eluent of 50 mM imidazole (in BGE) yielded a 25‐fold and 5‐fold decrease in the LODs by IMA‐SPE‐CE‐UV for Aβ(1–15) and Aβ(10–20) peptides (0.1 and 0.5 μg/mL, respectively) with regard to CE‐UV (2.5 μg/mL for both peptides). The phosphate BGE was also used in IMA‐SPE‐CE‐MS, but the eluent needed to be substituted by a 0.5% HAc v/v solution. Under optimum preconcentration and detection conditions, reproducibility of peak areas and migration times was acceptable (23.2 and 12.0%RSD, respectively). The method was more sensitive for Aβ(10–20) peptide, which could be detected until 0.25 μg/mL. Linearity for Aβ(10–20) peptide was good in a narrow concentration range (0.25–2.5 μg/mL, R2 = 0.93). Lastly, the potential of the optimized Ni(II)‐IMA‐SPE‐CE‐MS method for the analysis of amyloid peptides in biological fluids was evaluated by analyzing spiked plasma and serum samples.  相似文献   

8.
Palm leaf ash was characterized and used as low‐cost adsorbent for solid‐phase extraction and preconcentration of bisphenol A (BPA) in real water samples. Analysis of BPA was carried out using HPLC involving Eurospher 100–5‐C18 (25 cm × 4.5 mm, particle size 5 μm) column and water–acetonitrile (40:60, v/v) as mobile phase. The adsorption was achieved quantitatively at a pH of 6 with elution by 3 mL acetonitrile. The limits of detection and enrichment factor were 0.02 μg L?1 and 333, respectively. Under optimum conditions the relative standard deviation (RSD) was 2% (n = 10). Comparison of qualification criteria of presented preconcentration procedure with other research indicated that palm leaf ash adsorbent was better than many of the adsorbents in terms of cost and reusability. Also, the limit of detection, precision and enrichment factor were comparable and even better than the previously reported methods. Finally, the efficiency of method was computed by determination of trace amounts of BPA in sea, river, mineral and tap waters with recoveries of 93.3–105.5% and RSDs of 0.61–3.12%.. Briefly, the developed solid‐phase extraction and Preparative layer chromatography (PLC) methods may be used for bisphenol A monitoring in any environmental water sample. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
《Analytical letters》2012,45(14):1971-1979
In this paper, bamboo charcoal was successfully developed for the solid-phase extraction adsorbent for the determination of six organophosphorus pesticides in water samples. After the bamboo charcoal was pretreated and packed in the solid-phase extraction cartridge, the organophosphorus pesticides in water samples were carried out the solid-phase extraction. To establish a perfect solid-phase extraction procedure, the experimental conditions including the eluent, eluent volume, pH of the sample, flow rate of the sample, and loading volume of the sample were all investigated. When 100 mL water samples in the pH range of 6–7 were loaded with the flow rate of 2.5 mL · min?1 and then eluted with 10 mL acetonitrile, the proposed extraction method was validated by the recovery, correlation coefficient (R2), repeatability (RSD, n = 7) and LODs, which were 69.6–93.4%, 0.9982–0.9998, 2.9–5.6%, and 0.08–1.04 µg · L?1, respectively. Furthermore, the analysis of the tap, snow, and river water samples demonstrated the feasibility of the proposed SPE method for real water samples. Based on the aforementioned factors, it could be concluded that bamboo charcoal was a good solid-phase extraction adsorbent, and this proposed solid-phase extraction method was suitable for the effective enrichment and determination of the organophosphorus pesticides in water samples.  相似文献   

10.
A novel solid phase extraction technique for determination of total iron in environmental water samples was developed. The method is based on sorption of Fe(III) ions on octadecyl silica membrane disk modified with a new synthetic ligand dimethyl(E)‐2‐(2‐methoxyphenoxy)‐2‐butenedioate (I). Iron(III) is quantitatively retained on the disk in the pH range of 3–7 at a flow rate of 1–7 mL min−1. The Fe(III) eluted with 10 mL of 0.01 M EDTA and than was measured by flame atomic absorption spectrometry (FAAS) at 248.3 nm. The maximum capacity disk modified by 7 mg of ligand was found to be 197 ± 2 μg of iron(III). The breakthrough volume was greater than 2000 mL. The iron(III) was completely recovered (> 99%) from water with a preconcentration factor of more than 200. The limit of detection of the proposed method was 1.00 ng mL−1. The various cationic and anionic interferences had no effect on the recovery of iron(III) from the binary mixtures. The proposed method was successfully applied to determination of total iron from three different water samples.  相似文献   

11.
《Analytical letters》2012,45(14):2449-2461
Abstract

Sorbent extraction and elution of rare earth elements (REEs) by using bis(2‐ethyl‐hexyl)hydrogen phosphate (HDEHP) impregnated porous PTFE filter tube were studied. A 100 ng amount of each REEs was quantitatively extracted by filtering 1000 mL of matrix‐free solution under pH 2.0–3.2. For a synthetic seawater sample, extractability of lighter REEs (La–Sm) was lowered; optimum pH range to simultaneously extract all REEs was shifted to 2.9–3.2, and limit of sample volume for quantitative extraction was decreased to 100 mL for La–Sm [although heavier REEs (Eu–Lu) were quantitatively extracted from 1000 mL]. Extracted REEs were quantitatively eluted by filtering through 5 mL of 10 mol/L?1 hydrochloric acid to the tube. Hence, maximum preconcentration factors were of 200‐ and 20‐fold for Nd–Lu and La–Sm, respectively. Total recovery of 0.5–10 ng of REEs spiked to 300 mL of natural sea salt solution was tested; quantitative recovery (95.9% for Gd–102% for Eu) were obtained for all REEs except La (54.9%). The REEs in the natural sea salt solution were also determined by ICP‐MS after preconcentration with the present method [RSD=16% (La)–1.1% (Yb), n=3].  相似文献   

12.
A sensitive and selective column adsorption method is proposed for the preconcentration and determination of diazinon. Diazinon was preconcentrated on multiwalled carbon nanotubes (MWCNTs) as an adsorbent and then determined by high-performance liquid chromatography (HPLC). Several parameters on the recovery of the analyte were investigated. The experimental results showed that it was possible to obtain quantitative analysis when the solution pH was 6 using 200 mL of validation solution containing 2 μg of diazinon and 5 mL of acetonitrile as an eluent. Recovery of diazinon was 95.2 ± 4.2% with a relative standard deviation for seven determinations of 4.9% under optimum conditions. The maximum preconcentration factor was 200 for diazinon when 1000 mL of sample solution volume was used. The linear range of calibration curve was 0.3 to 10,000 ng mL− 1 with a correlation coefficient of 0.997 and the detection limit (3S/N) was 0.06 ng mL− 1. The proposed method was successfully applied to the determination of diazinon in tap water with high precision and accuracy.  相似文献   

13.
A simple, rapid, and sensitive method based on dispersive liquid–liquid microextraction combined with HPLC‐UV detection applied for the quantification of chlordiazepoxide in some real samples. The effect of different extraction conditions on the extraction efficiency of the chlordiazepoxide drug was investigated and optimized using central composite design as a conventional efficient tool. Optimum extraction condition values of variables were set as 210 μL chloroform, 1.8 mL methanol, 1.0 min extraction time, 5.0 min centrifugation at 5000 rpm min?1, neutral pH, 7.0% w/v NaCl. The separation was reached in less than 8.0 min using a C18 column using isocratic binary mobile phase (acetonitrile/water (60:40, v/v)) with flow rate of 1.0 mL min?1. The linear response (r2 > 0.998) was achieved in the range of 0.005–10 μg mL?1 with detection limit 0.0005 μg mL?1. The applicability of this method for simultaneous extraction and determination of chlordiazepoxide in four different matrices (water, urine, plasma, and chlordiazepoxide tablet) were investigated using standard addition method. Average recoveries at two spiking levels were over the range of 91.3–102.5% with RSD < 5.0% (n = 3). The obtained results show that dispersive liquid–liquid microextraction combined with HPLC‐UV is a fast and simple method for the determination of chlordiazepoxide in real samples.  相似文献   

14.
A method for the simultaneous preconcentration of Cu2+,Zn2+ and Fe3+ ions, in some food samples has been reported. The method is based on the adsorption of 3‐(1‐(1‐H‐indol‐3‐yl)‐3‐phenylallyl)‐1H‐indole (IPAI) loaded on Duolite XAD 761. The metal ions adsorbed on the modified solid phase resin are eluted using 6 mL of 4 mol L?1 nitric acid. The influences of the analytical parameters including pH and amount of ligand and solid phase and type and amount of surfactant and sample volume on the metal ions recoveries were investigated. The effects of matrix ions on the retentions of the analytes were also examined. The recoveries of analytes were generally higher than 95% with a RSD lower than 5%. The method has been successfully applied for these metals content evaluation in some real samples.  相似文献   

15.
A flow-injection analysis (FIA) system incorporating a micro-column of ZrO2 has been used for the development of an on-line multi-element method for the simultaneous preconcentration and determination of Al, Bi, Cd, Co, Cr, Cu, Fe, Ga, In, Mn, Mo, Ni, Pb, Tl, V, Sb, Sn, and Zn by inductively coupled plasma atomic emission spectrometry (ICP–AES). The conditions for quantitative and reproducible preconcentration, elution, and subsequent on-line ICP–AES determination were established. A sample (pH 8) is pumped through the column at 3 mL min–1 and sequentially eluted directly into the ICP–AES with 3 mol L–1 HNO3. With a sample volume of 100 mL and an elution volume of 1 mL signal enhancement 100 times better than for conventional continuous aspirating systems was obtained for the elements studied. The reproducibility (RSD %) of the method at the 10 ng mL–1 level in the eluate is acceptable – less than 8% for five replicates. Recoveries between 95.4% and 99.9% were obtained for the elements analysed. ZrO2, with a specific surface area of 57 m2 g–1 and a capacity of approximately 5 mg g–1 for the elements studied, was synthesized by hydrolysis of ZrCl4. The preconcentration system was evaluated for several simple synthetic matrices, standard water samples and synthetic seawater. The effect of foreign ions on the efficiency of preconcentration of the elements studied was investigated. The application of a micro-column filled with high-surface-area ZrO2 and flow injection inductively coupled plasma atomic emission spectrometry enables preconcentration and simultaneous determination of 18 elements at low concentrations (ng L–1) in different water samples.  相似文献   

16.
Senkyunolide I is one of the major bioactive components in the herbal medicine Ligusticum chuanxiong. The aim of this study was to develop and validate a fast, simple and sensitive LC‐MS/MS method for the determination of senkyunolide I in dog plasma. The plasma samples were processed with acetonitrile and separated on a Waters Acquity UPLC BEH C18 column (50 × 2.1 mm, 1.7 μm). The mobile phase consisted of 0.1% formic acid aqueous and acetonitrile was delivered at a flow rate of 0.3 mL min−1. The detection was achieved in the positive selected reaction monitoring mode with precursor‐to‐product transitions at m/z 225.1 → 161.1 for senkyunolide I and at m/z 349.1 → 305.1 for an internal standard. The assay was linear over the tested concentration range, from 0.5 ng mL−1 to 1000 ng mL−1, with a correlation coefficient >0.9992. The mean extraction recovery from dog plasma was within the range of 85.78–93.25%, while the matrix effect of the analyte was within the range of 98.23–108.89%. The intra‐ and inter‐day precisions (RSD) were <12.12% and the accuracy (RR) ranged from 98.89% to 104.24%. The validated assay was successfully applied to pharmacokinetic and bioavailability studies of senkyunolide I in dogs. The results demonstrated that (a) senkyunolide I showed short elimination half‐life (<1 h) in dog, (b) its oral bioavailability was >40% and (c) senkyunolide I showed dose‐independent pharmacokinetic profiles in dog plasma over the dose range of 1–50 mg kg−1.  相似文献   

17.
A solid‐phase extraction (SPE) method was developed to extract 14 pesticides simultaneously from environment samples using cigarette filter as the sorbent before gas chromatography‐mass spectrometry (GC‐MS) analysis. Parameters influencing the extraction efficiency, such as the sample loading flow rate, eluent and elution volume, were optimized. The optimum sample loading rate was 3 mL/min, and the retained compounds were eluted with 6 mL of eluent at 1 mL/min under vacuum. Good linearity was obtained for all the 14 pesticides (r2>0.99) from 0.1 to 20 μg/L for water and from 2 to 400 μg/kg for soil samples. The detection limits (signal‐to‐noise=3) of the proposed method ranged from 0.01 to 0.20 μg/L for water samples and from 0.42 to 6.95 μg/kg for soil samples. The developed method was successfully applied for determination of the analytes in real environmental samples, and the mean recoveries ranged from 76.4 to 103.7% for water samples and from 79.9 to 105.3% for soil samples with the precisions (relative standard deviation) between 2.0 and 13.6%.  相似文献   

18.
Polystyrene (PS) was extracted from styrofoam waste and functionalised with schiff base, N,N-bis(salicylidene)cyclohexanediamine (SCHD) through an azo spacer. The resin was characterised and used for preconcentration of Pb(II), Ni(II) and Cd(II) ions prior to their trace determinations by microsample injection system–coupled flame atomic absorption spectrometry (MIS-FAAS). The recoveries of studied metal ions were achieved ≥96.0% with relative standard deviation (RSD) ≤4.5 at optimum parameters: pH 8; resin amount 300 mg; flow rates 3.0 mL min?1 of sample solution; and 2.0 mL min?1 of eluent (2.0 mol L?1 HNO3). The limits of detection (LODs) and limits of quantification (LOQs) were found to be 0.32, 0.23 and 0.21 and 1.10, 0.78 and 0.69 μg L?1, respectively, with preconcentration factors (PFs) of 500, 800 and 1000, respectively. The linear ranges of the method were 1–40, 1–25 and 1–20 μg L?1 for Pb(II), Ni(II) and Cd(II) ions, respectively. The accuracy and validation of the method were evaluated by analysis of certified reference materials (CRMs). The method was successfully applied for preconcentration of studied metal ions in wastewater and wastewater-irrigated vegetable samples.  相似文献   

19.
A solid uncharged complex produced from 2‐aminocyclopentene‐1‐dithiocarboxylic acid (synthetic reagent) on naphthalene provides a very sensitive, selective and economical method for the preconcentration and determination of trace amounts of copper in drug and alloy samples. The 2‐aminocyclopentene‐1‐dithiocarboxylate of copper is retained quantitatively on microcrystalline naphthalene in the pH range 2.8–3.3. After filtration the solid mass consisting of copper complex‐naphthalene is dissolved with 4 mL of dimethylformamide (DMF). The absorbance is measured at 462 nm with a spectrophotometer against the reagent blank and molar absorptivity found to be 2.8 × 105 liter mol?1 cm?1. Beer's law is obeyed over the concentration range of 0.1–16.0 μg of copper in 4 mL of the dimethylformamide solution. Detection limit is 3 ng mL?1 [signal to noise ratio = 2]. Ten replicate determinations on a sample containing 1 μg of copper gave a relative standard deviation of 0.76%. The interference of a large number of anions and cations have been studied and the optimized conditions developed were utilized for determination of copper in various real samples.  相似文献   

20.
A novel, simple, and rapid reversed‐phase vortex‐assisted liquid–liquid microextraction coupled with high‐performance liquid chromatography has been introduced for the extraction, clean‐up, and preconcentration of amygdalin in oil and kernel samples. In this technique, deionized water was used as the extracting solvent. Unlike the reversed‐phase dispersive liquid–liquid microextraction, dispersive solvent was eliminated in the proposed method. Various parameters that affected the extraction efficiency, such as extracting solvent volume and its pH, vortex, and centrifuging times were evaluated and optimized. The calibration curve shows good linearity (r2 = 0.9955) and precision (RSD < 5.2%) in the range of 0.07–20 μg/mL. The limit of detection and limit of quantitation were 0.02 and 0.07 μg/mL, respectively. The recoveries were in the range of 96.0–102.0% with relative standard deviation values ranging from 4.0 to 5.1%. Unlike the conventional extraction methods for plant extracts, no evaporative and re‐solubilizing operations were needed in the proposed technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号