首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The photocatalyzed ortho-selective migration on a pyridyl ring has been achieved for the site-selective trifluoromethylative pyridylation of unactivated alkenes. The overall process is initiated by the selective addition of a CF3 radical to the alkene to provide a nucleophilic alkyl radical intermediate, which enables an intramolecular endo addition exclusively to the ortho-position of the pyridinium salt. Both secondary and tertiary alkyl radicals are well-suited for addition to the C2-position of pyridinium salts to ultimately provide synthetically valuable C2-fluoroalkyl functionalized pyridines. Moreover, the method was successfully applied to the reaction with P-centered radicals. The utility of this transformation was further demonstrated by the late-stage functionalization of complex bioactive molecules.  相似文献   

2.
The ability to selectively forge C–heteroatom bonds by C?F scission is typically accomplished by metal catalysts, specialized ligands and/or harsh reaction conditions. Described herein is a base‐mediated defluorosilylation of unactivated C(sp2)?F and C(sp3)?F bonds that obviates the need for metal catalysts. This protocol is characterized by its simplicity, mild reaction conditions, and wide scope, even within the context of late‐stage functionalization, constituting a complementary approach to existing C?Si bond‐forming protocols.  相似文献   

3.
A simple and practical visible‐light‐induced carbo‐2‐pyridylation of electron‐deficient alkenes with readily available N‐benzoylmethylpyridinium bromides is reported. More than 40 examples are presented and proceed in greater than 80 % yield (on average) with excellent regio‐ and diastereoselectivities.  相似文献   

4.
A new shelf‐stable and easily scalable difluoromethylthiolating reagent S‐(difluoromethyl) benzenesulfonothioate (PhSO2SCF2H) was developed. PhSO2SCF2H is a powerful reagent for radical difluoromethylthiolation of aryl and alkyl boronic acids, decarboxylative difluoromethylthiolation of aliphatic acids, and a phenylsulfonyl‐difluoromethylthio difunctionalization of alkenes under mild reaction conditions.  相似文献   

5.
Late‐stage synthesis of α,β‐unsaturated aryl ketones remains an unmet challenge in organic synthesis. Reported herein is a photocatalytic non‐chain‐radical aroyl chlorination of alkenes by a 1,3‐chlorine atom shift to form β‐chloroketones as masked enones that liberate the desired enones upon workup. This strategy suppresses side reactions of the enone products. The reaction tolerates a wide array of functional groups and complex molecules including derivatives of peptides, sugars, natural products, nucleosides, and marketed drugs. Notably, addition of 2,6‐di‐tert‐butyl‐4‐methyl‐pyridine enhances the quantum yield and efficiency of the cross‐coupling reaction. Experimental and computational studies suggest a mechanism involving PCET, formation and reaction of an α‐chloro‐α‐hydroxy benzyl radical, and 1,3‐chlorine atom shift.  相似文献   

6.
Reported is an asymmetric reductive dicarbofunctionalization of unactivated alkenes. Under the catalysis of a Ni/BOX system, various aryl bromides, incorporating a pendant olefinic unit, were successfully reacted with an array of primary alkyl bromides in the presence of Zn as a reductant, furnishing a series of benzene‐fused cyclic compounds bearing a quaternary stereocenter in high enantioselectivities. Notably, this reaction avoids the use of pregenerated organometallics and demonstrates high tolerance of sensitive functionalities. The preliminary mechanistic investigations reveal that this Ni‐catalyzed reaction proceeds as a cascade consisting of migratory insertion and cross‐coupling with a nickel(I)‐mediated intramolecular 5‐exo cyclization as the enantiodetermining step.  相似文献   

7.
Direct alkylation of a methyl group, on di‐ and trisubstituted ureas, with terminal alkenes by C(sp3)−H bond activation proceeded in the presence of a hydroxoiridium/bisphosphine catalyst to give high yields of the corresponding addition products. The hydroxoiridium/bisphosphine complex generates an amidoiridium intermediate by reaction with ureas having an N−H bond.  相似文献   

8.
The first iron‐catalyzed 1,2‐difunctionalization of styrenes and conjugated alkenes with silanes and either N or C, using an oxidative radical strategy, is described. Employing FeCl2 and di‐tert ‐butyl peroxide allows divergent alkene 1,2‐difunctionalizations, including 1,2‐aminosilylation, 1,2‐arylsilylation, and 1,2‐alkylsilylation, which rely on a wide range of nucleophiles, namely, amines, amides, indoles, pyrroles, and 1,3‐dicarbonyls, thus providing a powerful platform for producing diverse silicon‐containing alkanes.  相似文献   

9.
Aliphatic terminal alkenes react with pinacolborane at ambient temperature to afford dehydrogenative borylation compounds as the major product when iPr‐Foxap is used as the ligand with cationic rhodium(I) in the presence of norbornene, which acts as the sacrificial hydrogen acceptor. The reaction is applied to the one‐pot syntheses of aldehydes and homoallylic alcohols from aliphatic terminal alkenes.  相似文献   

10.
11.
The chemical inertness of abundant and commercially available alkyl chlorides precludes their widespread use as reactants in chemical transformations. Presented in this work is a metallaphotoredox methodology to achieve the catalytic intramolecular reductive cyclization of unactivated alkyl chlorides with tethered alkenes. The cleavage of strong C(sp3)?Cl bonds is mediated by a highly nucleophilic low‐valent cobalt or nickel intermediate generated by visible‐light photoredox reduction employing a copper photosensitizer. The high basicity and multidentate nature of the ligands are key to obtaining efficient metal catalysts for the functionalization of unactivated alkyl chlorides.  相似文献   

12.
13.
The synthetic utility of tertiary amines to oxidatively generate α‐amino radicals is well established, however, primary amines remain challenging because of competitive side reactions. This report describes the site‐selective α‐functionalization of primary amine derivatives through the generation of α‐amino radical intermediates. Employing visible‐light photoredox catalysis, primary sulfonamides are coupled with electron‐deficient alkenes to efficiently and mildly construct C?C bonds. Interestingly, a divergence between intermolecular hydrogen‐atom transfer (HAT) catalysis and intramolecular [1,5] HAT was observed through precise manipulation of the protecting group. This dichotomy was leveraged to achieve excellent α/δ site‐selectivity.  相似文献   

14.
An iron‐catalyzed hydrofluorination of unactivated alkenes has been developed. The use of a multidentate ligand and the fluorination reagent N‐fluorobenzenesulfonimide (NFSI) proved to be critical for this reaction, which afforded various fluorinated compounds in up to 94 % yield.  相似文献   

15.
Regioselective incorporation of a particular functional group into aliphatic sites by direct activation of unreactive C?H bonds is of great synthetic value. Despite advances in radical‐mediated functionalization of C(sp3)?H bonds by a hydrogen‐atom transfer process, the site‐selective vinylation of remote C(sp3)?H bonds still remains underexplored. Reported herein is a new protocol for the regioselective vinylation of unactivated C(sp3)?H bonds. The remote C(sp3)?H activation is promoted by a C‐centered radical instead of the commonly used N and O radicals. The reaction possesses high product diversity and synthetic efficiency, furnishing a plethora of synthetically valuable E alkenes bearing tri‐/di‐/mono‐fluoromethyl and perfluoroalkyl groups.  相似文献   

16.
Reported herein is an unprecedented protocol for trifluoromethylation of unactivated aliphatic C(sp3)?H bonds. With Cu(OTf)2 as the catalyst, the reaction of N‐fluoro‐substituted carboxamides (or sulfonamides) with Zn(CF3)2 complexes provides the corresponding δ‐trifluoromethylated carboxamides (or sulfonamides) in satisfactory yields under mild reaction conditions. A radical mechanism involving 1,5‐hydrogen atom transfer of N‐radicals followed by CF3‐transfer from CuII?CF3 complexes to the thus formed alkyl radicals is proposed.  相似文献   

17.
In the presence of Ni0/PCy3, styrene was found to participate in oxidative cyclization with tetrafluoroethylene, thus leading to the corresponding nickelacycle with a unique η3‐π‐benzyl structure. In addition, the flexibility of the coordination mode in the η3‐benzyl moiety allowed the partially fluorinated nickelacycle to undergo unprecedented amine‐induced α‐fluorine elimination, thus leading to the construction of a fluorinated cyclobutyl skeleton.  相似文献   

18.
A novel strategy for the expedient construction of CF3‐embeded tertiary/quarternary carbon centers was developed by taking advantage of photoredox catalysis. Thanks to a key step of single‐electron oxidation, electron‐rich gem‐difluoroalkenes, which otherwise are essentially reluctant towards F‐nucleoplilic addition, now readily participate in this fluoroallylation reaction. Furthermore, this strategy provides an elegant example for the generation, as well as functionalization, of α‐CF3‐substituted benzylic radical intermediates using cheap and readily available starting materials.  相似文献   

19.
Trifluoromethoxy (OCF3) and difluoromethoxy (OCF2H) groups are fluorinated structural motifs that exhibit unique physicochemical characteristics. Incorporation of these substituents into organic molecules is a highly desirable approach used in medicinal chemistry and drug discovery processes to alter the properties of a parent compound. Recently, tri‐ and difluoromethyl ethers have received increasing attention and several innovative strategies to access these valuable functional groups have been developed. The focus of this Minireview is the use of visible‐light photoredox catalysis in the synthesis of tri‐ and difluoromethyl ethers. Recent photocatalytic strategies for the formation of O?CF3, C?OCF3, O?CF2H, and C?OCF2H bonds as well as other transformations leading to the construction of ORF groups are discussed herein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号