共查询到20条相似文献,搜索用时 14 毫秒
1.
《Biomedical chromatography : BMC》2018,32(8)
In this study, a sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for the quantification of demethylzeylasteral in rat plasma. Electrospray ionization was operated in the negative ion mode while demethylzeylasteral and oleanolic acid (internal standard) were measured by selected reaction monitoring (demethylzeylasteral: m/z 479.2 → 436.0; oleanolic acid: m/z 454.9 → 407.2). This LC–MS/MS method had good selectivity, sensitivity, accuracy and precision. The pharmacokinetic profiles of demethylzeylasteral were subsequently examined in Wistar rats after oral or intravenous administration. 相似文献
2.
Shenbao Yang Ruiying Qu Zhe Zhu Wei Li Chengliang Zhao Liantai Li 《Biomedical chromatography : BMC》2018,32(8)
A sensitive and rapid LC–MS/MS method was developed and validated for quantitation of sciadopitysin in rat plasma using amentoflavone as an internal standard. Sample processing was accomplished after deproteinization with 150 μL aliquot of acetonitrile. Chromatographic separation was achieved using an Agela C18 column with an isocratic mobile phase comprising 2 mm ammonium acetate–acetonitrile (35:65, v/v) at a flow rate of 0.4 mL/min. Detection was performed by selection reaction monitoring on a triple‐quadrupole mass spectrometer following the transitions m/z 579 → 547 and 537 → 375 for sciadopitysin and internal standard, respectively, in the negative ionization mode. The calibration curve was linear from 2.90 to 1160 ng/mL for sciadopitysin. Intra‐ and inter‐day precisions were in the ranges 4.1–11.4 and 5.7–9.1% for sciadopitysin. Sciadopitysin was stable under different stability conditions. The validated assay was applied to pharmacokinetic and bioavailability studies in rats. 相似文献
3.
Fuqiang Li Guangyu Li Jinsong Zhao Jun Xiao Zaoxia Liu Guanfang Su 《Biomedical chromatography : BMC》2016,30(6):867-871
A simple, specific, and sensitive liquid chromatography–mass spectrometry (LC‐MS) method for determination of cyasterone in rat plasma was developed in our laboratory. Cucurbitacin B was used as an internal standard (IS). After protein precipitation with twofold volume of acetonitrile, the analyte and IS were separated on a Luna C18 column (100 × 4.6 mm, i.d., 3.0 µm; Phenomenex) by isocratic elution with acetonitrile–water (80:20, v/v) as the mobile phase at a flow rate of 0.4 mL/min. An electrospray ionization source was applied and operated in the positive ion mode; selected ion monitoring scan mode was used for quantification, and the target ions m/z 543.3 for cyasterone and m/z 581.3 for IS were chosen. Good linearity was observed in the concentration range of 0.40–400 ng/mL for cyasterone in rat plasma. Intra‐day and inter‐day precision were both <7.4%. This method was proved to be suitable for pharmacokinetic studies after oral (5.0 mg/kg) or intravenous (0.5 mg/kg) administration of cyasterone in rats. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
4.
《Biomedical chromatography : BMC》2018,32(8)
Opportunistic fungal infections are common in immunocompromised cancer patients, especially patients undergoing chemotherapy. Because antitumor agents are possible to combine with antifungal agents in clinical, it is necessary to study drug–drug interaction between antitumor agents and antifungal agents. The aim of the study was to explore a method for the simultaneous determination of voriconazole and docetaxel in plasma and investigate pharmacokinetic interaction of voriconazole and docetaxel in rats. A precise and reliable method using liquid chromatography tandem mass spectrometry (LC–MS/MS) was established for the simultaneous measure of docetaxel and voriconazole in rat plasma after liquid–liquid extraction with ethyl acetate. The method was fully validated and successfully applied to a pharmacokinetic interaction study of docetaxel and voriconazole in rats after single or combined administration. We found that the AUC of each drug after coadministration increased compared with that after the single administration, which might be caused by interaction at the absorption stage or the competitive inhibition on the metabolic enzymes. This established method can be utilized to study the detailed mechanism of the drug–drug interaction and guide rational drug use in the clinic. 相似文献
5.
Zhou Li Cungang Ding Qinghua Ge Zhen Zhou Xiaojin Zhi Xiaofen Liu 《Biomedical chromatography : BMC》2010,24(9):926-934
A new high‐throughput LC–MS/MS method for the simultaneous determination of lamivudine (3TC), stavudine (d4T) and nevirapine (NVP) in human plasma is presented, with zidovudine as an internal standard. The analytes were extracted from plasma by protein precipitation and only 150 μL plasma was needed. Chromatographic separation was achieved on a Shiseido C8 column (150 × 2.0 mm, 5 μm) with a total run time of 6 min. A tandem mass spectrometric detection was conducted using multiple reaction monitoring under positive ionization mode with an electrospray ionization interface. The method was developed and validated over the concentration range of 25–5000 ng/mL for 3TC and NVP and 20–4000 ng/mL for d4T. The method was validated in terms of intra‐ and inter‐day precision (≤8.6%), accuracy (within ± 8.4%), linearity and specificity. The method has been successfully applied to the pharmacokinetic study of a combination treatment of 300 mg lamivudine, 30 mg stavudine and 200 mg nevirapine in 22 healthy male volunteers under fasting conditions. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
6.
《Biomedical chromatography : BMC》2017,31(3)
A selective and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed for the simultaneous quantitative determination of 1,5‐dicaffeoylquinic acid (1,5‐DCQA) and 1‐O‐ acetylbritannilactone (1‐O‐ ABL) in rat plasma. Chromatographic separation was performed on a Zorbax Eclipse XDB‐C18 column using isocratic mobile phase consisting of methanol–water–formic acid (70:30:0.1, v /v/v) at a flow rate of 0.25 mL/min. The detection was achieved using a triple‐quadrupole tandem MS in selected reaction monitoring mode. The calibration curves of all analytes in plasma showed good linearity over the concentration ranges of 0.850–213 ng/mL for 1,5‐DCQA, and 0.520–130 ng/mL for 1‐O‐ ABL, respectively. The extraction recoveries were ≥78.5%, and the matrix effect ranged from 91.4 to 102.7% in all the plasma samples. The method was successfully applied for the pharmacokinetic study of the two active components in the collected plasma following oral administration of Inula britannica extract in rats. 相似文献
7.
《Biomedical chromatography : BMC》2017,31(12)
A sensitive LC–MS method was developed for the quantification of morusin in rat plasma using praeruptorin C as internal standard. After extraction with diethyl ether, post‐treatment samples were chromatographed on a Hypersil C18 column. An isocratic mobile phase consisting of methanol–water (70:30, v /v) was applied at a flow rate of 0.4 mL/min. Detection was performed via electrospray ionization source with positive ion mode using selected ion monitoring mode at m/z 443.1 for morusin and m/z 451.0 for IS. Acceptable linearity (r 2 ≥ 0.99) was observed over the concentration range of 1.5–800 ng/mL. This method was successfully applied in the pharmacokinetics study of morusin in rats. 相似文献
8.
《Biomedical chromatography : BMC》2018,32(3)
Genipin (GP), an active metabolite of geniposide (GE), exhibits more potent pharmacological effects than its parent compound. In this paper, a sensitive LC‐MS/MS method was developed and fully validated for the simultaneous determination of GE and GP in rat plasma. We found that GP degraded rapidly in rat plasma at room temperature as a result of irreversible binding with the endogenous nucleophiles in plasma. GP was stable when the sample's pH was ≤4.0. The degradation of GP in rat plasma was well prevented by immediate addition of 5% glacial acetic acid to the freshly collected plasma. The detection was performed on a tandem mass spectrometer coupled with electrospray ionization source in negative mode. Quantification was conducted by multiple reaction monitoring of the transitions [M + CH3COO]− m/z 447.3 → 225.3 for GE and [M − H]− m/z 225.2 → 123.1 for GP. The method exhibited high sensitivity (LLOQ 1 ng/mL for GE and 0.2 ng/mL for GP) by selecting the acetate adduct ions as the precursor ions for GE. The robust developed method was successfully applied to a pharmacokinetic study in rats after oral administration of GE. 相似文献
9.
《Biomedical chromatography : BMC》2017,31(3)
Hinokiflavone has drawn a lot of attention for its multiple biological activities. In this study, a sensitive and selective method for determination of hinokiflavone in rat plasma was developed for the first time, using liquid chromatography–tandem mass spectrometry (LC–MS/MS). Amentoflavone was used as an internal standard. Separation was achieved on a Hypersil Gold C18 column with isocratic elution using methanol–water (65:35, v /v) as mobile phase at a flow rate of 0.3 mL/min. A triple quadrupole mass spectrometer operating in the negative electrospray mode with selected reaction monitoring was used to detect the transitions of m/z 537 → 284 for hinokiflavone and m/z 537 → 375 for IS. The LOQ was 0.9 ng/mL with a linear range of 0.9–1000 ng/mL. The intra‐ and inter‐day accuracy (RE%) ranged from −3.75 to 6.91% and from −9.20 to 2.51% and the intra‐ and inter‐day precision (RSD) was between 0.32–14.11 and 2.85–10.04%. The validated assay was successfully applied to a pharmacokinetic study of hinokiflavone in rats. The half‐life of drug elimination at the terminal phase was 6.10 ± 1.86 h, and the area under the plasma concentration‐time curve from time zero to the time of last measurable concentration and to infinity values obtained were 2394.42 ± 466.86 and 2541.93 ± 529.85 h ng/mL, respectively. 相似文献
10.
《Biomedical chromatography : BMC》2018,32(7)
A simple and sensitive liquid chromatography tandem mass spectrometry method was validated for simultaneous quantification of evodiamine and its metabolites 10‐hydroxyevodiamine (M1), 18‐hydroxyevodiamine (M2), 10‐hydroxyevodiamine‐glucuronide (M3) and 18‐hydroxy‐ evodiamine‐glucuronide (M4) in rat plasma for the first time. The analytes were extracted with acetonitrile and separated on a C18 column within 3 min. The detection was achieved in positive selected reaction monitoring mode with precursor‐to‐product transitions at m/z 304.1 → 161.1 for evodiamine, m/z 320.1 → 134.1 for M1, m/z 320.1 → 150.1 for M2, m/z 496.2 → 134.1 for M3, m/z 496.2 → 171.1 for M4 and m/z 349.2 → 305.1 for camptothecin (internal standard). The linearity was evident over the tested concentration ranges with correlation coefficients >0.9991. The lower limits of quantification for evodiamine, M1, M2, M3 and M4 were 0.1, 0.1, 0.1, 0.25 and 0.25 ng mL−1, respectively. Extraction recoveries and matrix effects of the analytes were within the ranges of 84.51–97.21 and 90.13–103.30%, respectively. The accuracy (relative error) ranged from −8.14 to 7.23% while the intra‐ and inter‐day precisions (relative standard deviation) were < 9.31%. The validated assay was successfully applied for the pharmacokinetic study of evodiamine, M1, M2, M3 and M4 in rat. The current study will be helpful in understanding the in vivo disposition of evodiamine. 相似文献
11.
《Biomedical chromatography : BMC》2018,32(7)
Cabozantinib (CBZ) is used for the treatment of progressive, metastatic medullary thyroid cancer. Its major oxidative metabolite is cabozantinib N‐oxide (CBN), which contains a structural alert associated with mutagenicity, yet the pharmacokinetics studies lack the simultaneous investigation of CBN and dose proportionality. In the current study a simple LC–MS/MS method was developed and validated for the simultaneous estimation and pharmacokinetic investigation of CBZ and CBN in rat plasma. The analytes were separated on a Waters Atlantics C18 column (2.1 × 150 mm, 3 μm). The mass spectrometry analysis was conducted in positive ionization mode with multiple reaction monitoring. Good linearity was observed over the concentration ranges of 0.500–5000 ng/mL for CBZ and 0.525–2100 ng/mL for CBN. The extraction recoveries were constant and the intra‐ and inter‐batch precision and accuracy were acceptable for the analysis of biological samples. The method was successfully applied for the simultaneous estimation of CBZ and CBN in a pharmacokinetic study in Sprague–Dawley rats. After oral administration of CBZ (1, 5 and 12.6 mg/kg), although CBZ showed dose proportionality, the metabolite CBN showed obvious nonlinear elimination pharmacokinetics with greater than dose‐proportional increases in exposure. 相似文献
12.
《Biomedical chromatography : BMC》2017,31(12)
A sensitive and specific LC–MS/MS assay for determination of β ‐eudesmol in rat plasma was developed and validated. After liquid–liquid extraction with ethyl ether , the analyte and IS were separated on a Capcell Pak C18 column (50 × 2.0 mm, 5 μm) by isocratic elution with acetonitrile—water–formic acid (77.5:22.5:0.1, v /v/v) as the mobile phase at a flow rate of 0.4 mL/min. An ESI source was applied and operated in positive ion mode; a selected reaction monitoring scan was used for quantification by monitoring the precursor–product ion transitions of m/z 245.1 → 163.1 for β ‐eudesmol and m/z 273.4 → 81.2 for IS. Good linearity was observed in the concentration range of 3–900 ng/mL for β ‐eudesmol in rat plasma. Intra‐ and inter‐day precision and accuracy were both within ±14.3%. This method was applied for pharmacokinetic studies after intravenous bolus of 2.0 mg/kg or intragastric administration of 50 mg/kg β ‐eudesmol in rats. 相似文献
13.
A sensitive, selective and rapid ultra‐performance liquid chromatography/tandem mass spectrometry method was developed and validated for the quantification of flavokawain B in rat plasma using myrislignan as an internal standard. Sample preparation was accomplished through a protein precipitation extraction process. Chromatographic resolution of flavokawain B and the IS was achieved on an Agilent XDB‐C18 column (2.1 × 100 mm, 1.8 μm) using a gradient mobile phase comprising 0.1% formic acid in water and acetonitrile delivered at a flow rate of 0.5 mL/min. Flavokawain B and the IS eluted at 3.27 and 1.96 min, respectively. The total chromatographic run time was 6.0 min. A linear response function was constructed in the concentration range 0.524–1048 ng/mL. Method validation was performed as per the US Food and Drug Administration guidelines and the results met the acceptance criteria. Intra‐ and inter‐day accuracy and precision were in the ranges of ?14.3–13.2 and 3.4–11.8%, respectively. Flavokawain B was demonstrated to be stable under various stability conditions. This method has been applied to a pharmacokinetic study in rats. 相似文献
14.
《Biomedical chromatography : BMC》2018,32(8)
An accurate and sensitive LC–MS/MS method for determining thalidomide, 5‐hydroxy thalidomide and 5′‐hydroxy thalidomide in human plasma was developed and validated using umbelliferone as an internal standard. The analytes were extracted from plasma (100 μL) by liquid–liquid extraction with ethyl acetate and then separated on a BETASIL C18 column (4.6 × 150 mm, 5 μm) with mobile phase composed of methanol–water containing 0.1% formic acid (70:30, v/v) in isocratic mode at a flow rate of 0.5 mL/min. The detection was performed using an API triple quadrupole mass spectrometer in atmospheric pressure chemical ionization mode. The precursor‐to‐product ion transitions m/z 259.1 → 186.1 for thalidomide, m/z 273.2 → 161.3 for 5‐hydroxy thalidomide, m/z 273.2 → 146.1 for 5′‐hydroxy thalidomide and m/z 163.1 → 107.1 for umbelliferone (internal standard, IS) were used for quantification. The calibration curves were obtained in the concentrations of 10.0–2000.0 ng/mL for thalidomide, 0.2–50.0 ng/mL for 5‐hydroxy thalidomide and 1.0–200.0 ng/mL for 5′‐hydroxy thalidomide. The method was validated with respect to linear, within‐ and between‐batch precision and accuracy, extraction recovery, matrix effect and stability. Then it was successfully applied to estimate the concentration of thalidomide, 5‐hydroxy thalidomide and 5′‐hydroxy thalidomide in plasma samples collected from Crohn's disease patients after a single oral administration of thalidomide 100 mg. 相似文献
15.
《Biomedical chromatography : BMC》2018,32(3)
Isomers β‐asarone and α‐asarone have recently been demonstrated to have differential pharmacological activities . Here, we report an LC–MS/MS method developed using acetonitrile to extract two isomeric phenylpropenes from rat plasma. Separation was achieved using a XDB‐C18 column (100 × 2.1 mm; i.d., 1.8 μm) with a mobile phase of methanol–0.1% formic acid (55:45, v/v) at a flow rate of 0.3 mL/min. Calibration curves ranging from 5.20 to 2080 ng/mL for β‐asarone and from 3.68 to 1470 ng/mL for α‐asarone were linear (r2 ≥ 0.9938) with the lower limits of quantification being 5.20 and 3.68 ng/mL for both isomers. Intravenous administration of β‐asarone (2.22 mg/kg) and α‐asarone (2.36 mg/kg) in rats yielded half‐lives of 13.40 ± 4.11 and 28.88 ± 7.82 min with clearance values of 0.196 ± 0.062 mL/min/kg and 0.112 ± 0.012 mL/min/kg for β‐asarone and α‐asarone, respectively. 相似文献
16.
Triptolide is one of the main active ingredients of Tripterygium wilfordii Hook. F. In this study, a sensitive LC–MS/MS method was established and validated to determine the concentration of triptolide in rat plasma. Triptolide and an internal standard [(5R)‐5‐hydroxytriptolide] were extracted from 100 μL of rat plasma with acetonitrile, and the dried residue was then reconstituted and reacted with benzylamine to produce benzylamine triptolide and benzylamine (5R)‐5‐hydroxytriptolide. Derivatization increased the sensitivity of triptolide detection by ~100‐fold. Quantification was performed using a QTRAP 5500 tandem mass spectrometer with positive electrospray ionization in multiple reaction monitoring mode with an ion transition m/z 468.5 → 192.0 for benzylamine triptolide and m/z 484.3 → 192.1 for benzylamine (5R)‐5‐hydroxytriptolide. Good linearity was observed in the range of 0.030–100 ng/mL with a lower limit of quantitation of 0.030 ng/mL. The intra‐ and inter‐day precision was <6.5%, and the accuracy ranged from ?11.7 to ?4.4%. The recovery remained consistent and was reproducible at different concentrations. This method was successfully applied to the study of triptolide drug–drug interactions in Sprague–Dawley rats. With the use of itraconazole (40 mg/kg, p.o.) as a CYP3A inhibitor, the plasma exposure of triptolide in rats was increased by 36%. 相似文献
17.
Zhipeng Deng Xin Wang Huanxin Zhao Shuxiang Cui Qingqiang Yao Hong Bai 《Biomedical chromatography : BMC》2013,27(6):802-806
Brazilin is a major homoisoflavonoid component isolated from the dried heartwood of traditional Chinese medicine Caesalpinia sappan L., which is a natural red pigment used for histological staining. Herein a sensitive, specific and rapid analytical LC‐MS/MS method was established and validated for brazilin in rat plasma. After a simple step of protein precipitation using acetonitrile, plasma samples were analyzed using an LC‐MS/MS system. Brazilin and the IS (protosappanin B) were separated on a Diamonsil C18 analytical column (150 × 4.6 mm, 5 µm) using a mixture of water and 10 mm ammonium acetate in methanol (20:80, v/v) as mobile phase at a flow rate of 0.6 mL/min. The method was sensitive with a lower limit of quantitation of 10.0 ng/mL, with good linearity (r2 ≥ 0.99) over the linear range 10.0–5000 ng/mL. All the validation data, such as accuracy and precision, matrix effect, extraction recovery and stability tests were within the required limits. The assay method was successfully applied to evaluate the pharmacokinetics parameters of brazilin after an oral dose of 100 mg/kg brazilin in rats. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
18.
Bhavesh Babulal Gabani Suresh P. Sulochana Vinay Kiran Umesh Todmal Ramesh Mullangi 《Biomedical chromatography : BMC》2019,33(11)
A liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) method has been developed and validated for the quantification of tunicamycin in rat plasma as per regulatory guideline. Chromatography of tunicamycin and the IS in the processed plasma samples was achieved on an X‐Terra phenyl column using a binary gradient (mobile phase A, acetonitrile and mobile phase B, 5 mm ammonium formate) elution at a flow rate of 0.6 ml/min. LC–MS/MS was operated under the multiple reaction monitoring mode using the electrospray ionization technique in positive ion mode and the transitions of m/z 817.18 → 596.10, 831.43 → 610.10, 845.29 → 624.10, 859.23 → 638.10 and 309.24 → 163.20 were used to quantitate homologs A–D and the IS, respectively. The total chromatographic run time was 4.5 min. The correlation coefficient (r2) was >0.99 for all homologs with accuracy 90.7–107.4% and precision 0.74–15.1%. The recovery of homologs was 78.6–90.2%. No carryover was observed and the matrix effect was minimal. Tunicamycin four homologs were found to be stable on the bench‐top for 6 h, for up to three freeze–thaw cycles, in the injector for 24 h and for 1 month at ?80 ° C. The applicability of the validated method has been demonstrated in a rat pharmacokinetic study. 相似文献
19.
Lin Wang Ting Yan Kexia Zhang Feifeng Li Jingming Jia Gaosheng Hu 《Biomedical chromatography : BMC》2019,33(4)
A method based on ultra‐performance liquid chromatography–tandem mass spectrometry has been developed for the rapid and simultaneous determination of five catechins and four theaflavins in rat plasma using ethyl gallate as internal standard. The pharmacokinetic profiles of these compounds were compared after oral administration of five kinds of Da Hong Pao tea to rats. Biosamples processed with a mixture of β‐glucuronidase and sulfatase were extracted with ethyl acetate–isopropanol. Chromatographic separation was achieved by gradient elution using 10 mm HCOONH4 solution and methanol as the mobile phase. Analytes were detected using negative ion electrospray ionization in multiple reaction monitoring mode. The lower limits of quantification were 1.0, 0.74 and 0.5 ng/mL for theaflavins, two catechins and three catechins, respectively. The validation parameters were well within acceptable limits. The average half‐lives (t1/2) in blood of the reference solution group was much shorter than those of tea samples. The values of AUC0–t and Cmax of the polyphenols and theaflavins exhibited linear pharmacokinetic characteristics which were related to the dose concentration. 相似文献
20.
Yantong Zhu Haitao Yu Tengfei Li Duo Li Li Ding Chang Shu 《Biomedical chromatography : BMC》2019,33(5)
A sensitive liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) method was developed and validated for the simultaneous determination of ramelteon and its active metabolite M‐II in human plasma. After extraction from 200 μL of plasma by protein precipitation, the analytes and internal standard (IS) diazepam were separated on a Hedera ODS‐2 (5 μm, 150 × 2.1 mm) column with a mobile phase consisted of methanol–0.1% formic acid in 10 mm ammonium acetate solution (85:15, v/v) delivered at a flow rate of 0.5 mL/min. Mass spectrometric detection was operated in positive multiple reaction monitoring mode. The calibration curves were linear over the concentration range of 0.0500–30.0 ng/mL for ramelteon and 1.00–250 ng/mL for M‐II, respectively. This method was successfully applied to a clinical pharmacokinetic study in healthy Chinese volunteers after a single oral administration of ramelteon. The maximum plasma concentration (Cmax), the time to the Cmax and the elimination half‐life for ramelteon were 4.50 ± 4.64ng/mL, 0.8 ± 0.4h and 1.0 ± 0.9 h, respectively, and for M‐II were 136 ± 36 ng/mL, 1.1 ± 0.5 h, 2.1 ± 0.4 h, respectively. 相似文献