共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
3.
4.
Dr. Svyatoslav E. Tolstikov Prof. Evgeny V. Tretyakov Dmitry E. Gorbunov Irina F. Zhurko Prof. Matvey V. Fedin Prof. Galina V. Romanenko Dr. Artem S. Bogomyakov Prof. Nina P. Gritsan Dr. Dmitry G. Mazhukin 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(41):14598-14604
It was shown that dipole‐stabilized paramagnetic carbanion lithiated 4,4,5,5‐tetramethyl‐4,5‐dihydro‐1H‐imidazol‐1‐oxyl 3‐oxide can be attached in a nucleophilic manner to either isolated or conjugated aldonitrones of the 2,5‐dihydroimidazole 3‐oxide and 2H‐imidazole 1‐oxide series to afford adducts the subsequent oxidation of which leads to polyfunctional mono‐ and diradicals. According to XRD, at least two polymorphic modifications can be formed during crystallization of the resulting paramagnetic compounds, and for each of them, geometric parameters of the molecules are similar. An EPR spectrum of the diradical in frozen toluene has a complicated lineshape, which can be fairly well reproduced by using X‐ray diffraction structural analysis and the following set of parameters: D=14.9 mT, E=1.7 mT; tensor a(14N)=[0.260 0.260 1.625] mT, two equivalent tensors for the nitronyl nitroxide moiety a(14N)=[0.198 0.198 0.700] mT, and g≈2.007. According to our DFT and ab initio calculations, the intramolecular exchange in the diradical is very weak and most likely ferromagnetic. 相似文献
5.
σ‐Hole Opposite to a Lone Pair: Unconventional Pnicogen Bonding Interactions between ZF3 (Z=N,P, As,and Sb) Compounds and Several Donors 下载免费PDF全文
The ability of several pnicogen sp3 derivatives ZF3 (Z=N, P, As, Sb) to interact with electron‐rich entities by means of the opposite face to the lone pair (lp) is investigated at the RI‐MP2/aug‐cc‐pVQZ level of theory. The strength of the interaction ranges from ?1 to ?87 kJ mol?1, proving its favorable nature, especially when the lp is coordinated to a metal center, whereby the strength of the interaction is significantly enhanced. NBO analysis showed that orbital effects are modest contributors to the global stabilization of the pnicogen σ‐hole bonded complexes studied. Finally, a selection of Cambridge Structural Database examples are shown that demonstrate the impact of this counterintuitive binding mode in the solid state. 相似文献
6.
This paper reports on the gas‐phase radical–radical dynamics of the reaction of ground‐state atomic oxygen [O(3P), from the photodissociation of NO2] with secondary isopropyl radicals [(CH3)2CH, from the supersonic flash pyrolysis of isopropyl bromide]. The major reaction channel, O(3P)+(CH3)2CH→C3H6 (propene)+OH, is examined by high‐resolution laser‐induced fluorescence spectroscopy in crossed‐beam configuration. Population analysis shows bimodal nascent rotational distributions of OH (X2Π) products with low‐ and high‐N′′ components in a ratio of 1.25:1. No significant spin–orbit or Λ‐doublet propensities are exhibited in the ground vibrational state. Ab initio computations at the CBS‐QB3 theory level and comparison with prior theory show that the statistical method is not suitable for describing the main reaction channel at the molecular level. Two competing mechanisms are predicted to exist on the lowest doublet potential‐energy surface: direct abstraction, giving the dominant low‐N′′ components, and formation of short‐lived addition complexes that result in hot rotational distributions, giving the high‐N′′ components. The observed competing mechanisms contrast with previous bulk kinetic experiments conducted in a fast‐flow system with photoionization mass spectrometry, which suggested a single abstraction pathway. In addition, comparison of the reactions of O(3P) with primary and tertiary hydrocarbon radicals allows molecular‐level discussion of the reactivity and mechanism of the title reaction. 相似文献
7.
An ab initio theoretical investigation on the geometrical and electronic structures and photoelectron spectroscopies (PES) of BAun?/0 (n = 1–4) auroboranes has been performed in this work. Density functional theory and coupled cluster method (CCSD(T)) calculations indicate that BAu (n = 1–4) clusters with n‐Au terminals possess similar geometrical structures and bonding patterns with the corresponding boron hydrides BH. The PES spectra of BAu (n = 1–4) anions have been simulated computationally to facilitate their future experimental characterizations. In this series, the Td BAu anion appears to be unique and particularly interesting: it possesses a perfect tetrahedral geometry and has the highest vertical electron detachment energy (VDE = 3.69 eV), largest HOMO‐LUMO gap (ΔEgap = 3.0 eV), and the highest first excitation energy (Eex = 2.18 eV). The possibility to use the tetrahedral BAu unit as the building block of Li+[BAu4]? ion‐pair and other [BAu4]?‐containing inorganic solids is discussed. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011 相似文献
8.
9.
Prof. Dr. Tetsuo Okujima Tasuku Kikkawa Prof. Dr. Haruyuki Nakano Hiroshi Kubota Nobumasa Fukugami Prof. Dr. Noboru Ono Prof. Dr. Hiroko Yamada Prof. Dr. Hidemitsu Uno 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(40):12854-12863
Bicyclo[2.2.2]octadiene (BCOD) fused azuliporphyrins were synthesized by 3+1 porphyrin synthesis of azulitripyrranes with diformylpyrroles. Subsequent retro‐Diels–Alder reaction of the BCOD‐fused azuliporphyrins afforded azulibenzo‐, azulidibenzo‐, and azulitribenzoporphyrins 1 – 5 . NMR and UV/Vis spectra, as well as nucleus‐independent chemical shift (NICS) calculations revealed that 1 – 5 and their diprotonated dications exhibit relatively low porphyrinoid aromaticity, which was dependent on the position and number of fused benzene rings present. 相似文献
10.
《Chemphyschem》2003,4(12):1344-1348
11.
The π contribution to the electron localization function (ELF) is used to compare 4nπ‐ and (4n+2)π‐electron annulenes, with particular focus on the aromaticity of 4nπ‐electron annulenes in their lowest triplet state. The analysis is performed on the electron density obtained at the level of OLYP density functional theory, as well as at the CCSD and CASSCF ab initio levels. Two criteria for aromaticity of all‐carbon annulenes are set up: the span in the bifurcation values ΔBV(ELFπ) should be small, ideally zero, and the bifurcation value for ring closure of the π basin RCBV(ELFπ) should be high (≥ 0.7). On the basis of these criteria, nearly all 4nπ‐electron annulenes are aromatic in their lowest triplet states, similar to (4n+2)π‐electron annulenes in their singlet ground states. For singlet biradical cyclobutadiene and cyclooctatetraene constrained to D4h and D8h symmetry, respectively, the RCBV(ELFπ) at the CASSCF level is lower (0.531 and 0.745) than for benzene (0.853), even though they have equal proportions of α‐ and β‐electrons. 相似文献
12.
13.
14.
《化学:亚洲杂志》2017,12(7):804-810
Silicon carbide materials, as leading wide band gap semiconductors, hold significant importance in semiconductor technologies. Herein, diamond‐like 3D materials with low density, but high elasticity properties, have been designed from first‐principles calculations. They are porous single‐crystalline materials composed of sp3‐hybridized silicon (or germanium) and sp‐type C≡C (or B≡N) linear moieties; their stabilities are comparable to those of recently prepared SiC4 materials. Moreover, such wide band gap semiconductors have strong absorption over a wide UV range and exhibit superlight, superflexible, and incompressible mechanical properties, and their optoelectronic and mechanical properties can be well tuned through structural modifications. Such features provide high potential for practicable application under extreme conditions, and suggest promising applications for the design of UV optoelectronic devices. 相似文献
15.
Mercè Deumal Dr. Jeremy M. Rawson Dr. Andrés E. Goeta Dr. Judith A. K. Howard Prof. Royston C. B. Copley Dr. Michael A. Robb Prof. Juan J. Novoa Prof. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(9):2741-2750
The crystal structure of the spin‐canted antiferromagnet β‐p‐NCC6F4CNSSN. at 12 K (reported in this work) was found to adopt the same orthorhombic space group as that previously determined at 160 K. The change in the magnetic properties of these two crystal structures has been rigorously studied by applying a first‐principles bottom‐up procedure above and below the magnetic transition temperature (36 K). Calculations of the magnetic exchange pathways on the 160 K structure reveal only one significant exchange coupling (J(d1)=?33.8 cm?1), which generates a three‐dimensional diamond‐like magnetic topology within the crystal. The computed magnetic susceptibility, χ(T), which was determined by using this magnetic topology, quantitatively reproduces the experimental features observed above 36 K. Owing to the anisotropic contraction of the crystal lattice, both the geometry of the intermolecular contacts at 12 K and the microscopic JAB radical–radical magnetic interactions change: the J(d1) radical–radical interaction becomes even more antiferromagnetic (?43.2 cm?1) and two additional ferromagnetic interactions appear (+7.6 and +7.3 cm?1). Consequently, the magnetic topologies of the 12 and 160 K structures differ: the 12 K magnetic topology exhibits two ferromagnetic sublattices that are antiferromagnetically coupled. The χ(T) curve, computed below 36 K at the limit of zero magnetic field by using the 12 K magnetic topology, reproduces the shape of the residual magnetic susceptibility (having subtracted the contribution to the magnetization arising from spin canting). The evolution of these two ferromagnetic JAB contributions explains the change in the slope of the residual magnetic susceptibility in the low‐temperature region. 相似文献
16.
Dr. L. Claudia Gómez‐Aguirre Dr. Breogán Pato‐Doldán Dr. Alessandro Stroppa Dr. Li‐Ming Yang Prof. Thomas Frauenheim Prof. Jorge Mira Dr. Susana Yáñez‐Vilar Dr. Ramón Artiaga Dr. Socorro Castro‐García Dr. Manuel Sánchez‐Andújar Prof. María Antonia Señarís‐Rodríguez 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(23):7863-7870
The perovskite azido compound [(CH3)4N][Mn(N3)3], which undergoes a first‐order phase change at Tt=310 K with an associated magnetic bistability, was revisited in the search for additional ferroic orders. The driving force for such structural transition is multifold and involves a peculiar cooperative rotation of the [MnN6] octahedral as well as order/disorder and off‐center shifts of the [(CH3)4N]+ cations and bridging azide ligands, which also bend and change their coordination mode. According to DFT calculations the latter two give rise to the appearance of electric dipoles in the low‐temperature (LT) polymorph, the polarization of which nevertheless cancels out due to their antiparallel alignment in the crystal. The conversion of this antiferroelectric phase to the paraelectric phase could be responsible for the experimental dielectric anomaly detected at 310 K. Additionally, the structural change involves a ferroelastic phase transition, whereby the LT polymorph exhibits an unusual and anisotropic thermal behavior. Hence, [(CH3)4N][Mn(N3)3] is a singular material in which three ferroic orders coexist even above room temperature. 相似文献
17.
Inside Back Cover: Infinite Polyiodide Chains in the Pyrroloperylene–Iodine Complex: Insights into the Starch–Iodine and Perylene–Iodine Complexes (Angew. Chem. Int. Ed. 28/2016) 下载免费PDF全文
Dr. Sheri Madhu Hayden A. Evans Dr. Vicky V. T. Doan‐Nguyen Dr. John G. Labram Dr. Guang Wu Prof. Dr. Michael L. Chabinyc Prof. Dr. Ram Seshadri Prof. Dr. Fred Wudl 《Angewandte Chemie (International ed. in English)》2016,55(28):8135-8135
18.
19.
《Chemphyschem》2003,4(4):321-321
The cover picture shows an intriguing effect in molecular systems, which is caused by the parity‐violating weak interactions: The chemical shifts of magnetic nuclei are predicted to differ for the two enantiomers of a chiral compound! While in the R enantiomer the nucleus (red) of the yellow center gives rise to the red NMR signal, the corresponding nucleus of the S enantiomer (green) is expected to absorb at a slightly different frequency. The ab initio approach presented by Laubender and Berger on pp. 395–399 allows for a prediction of the resulting parity‐violating line splitting (shown in the black curve) and for the identification of molecular candidates that are well‐suited to the first successful measurement of parity‐violating effects in molecules. 相似文献
20.
Ming‐Tsang Tsai Po‐Yu Tsai Millard H. Alexander Prof. King‐Chuen Lin Prof. 《Chemphyschem》2008,9(4):572-578
An experimental and theoretical investigation of rotational energy transfers (RET) of CH involving the B 2Σ? (v=0, 0≤N≤5, F) state by collisions with Ar is undertaken, using the photolysis‐probe technique. Time‐resolved laser‐induced fluorescence resulting from an initially prepared fine‐structure label is dispersed using a step‐scan Fourier transform spectrometer. The spin‐resolved RET rate constants are evaluated with the simulation of a kinetic model. The quantum‐scattering method is used for the calculation of the fine‐structure‐resolved cross sections and rate constants in the rotationally inelastic collisions. The theoretical values are generally consistent with our experimental findings, both in the order of magnitude and trend of N and ΔN dependence. The propensity rules obtained from the experiments are essentially obeyed by theoretical calculations, and are also in accordance with those reported by Kind and Stuhl. The RET rate constants obtained for the v=0 level are smaller than those obtained previously for v=1. The discrepancy in the RET behavior may be caused by an anisotropy difference of the interaction potential resulting from vibrational excitation. 相似文献