首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2-Hydroxy salicylhydrazide isatin hydrazone (L) and its Mn (II), Co (II), Ni (II), Cu (II), and Zn (II), metal complexes were synthesized. 1H NMR, UV–Vis, IR spectroscopy and elemental (CHN/S) analysis techniques were applied for characterization. TG/DTA techniques revealed that all the synthetic compounds are thermally stable up to 300 °C. They were found non-electrolytes in nature. Furthermore, all these complexes were evaluated for antiglycation and DPPH radical scavenging activities. They showed varying degree of activity with IC50 values between 168.23 and 269.0 μM in antiglycation and 29.63–57.71 μM in DPPH radical scavenging activity. Mn (II), Co (II), Ni (II), Cu (II), and Zn (II), metal complexes showed good antiglycation as well as DPPH radical scavenging activity. The IC50 values for antiglycation activity are 168.23 ± 2.37, 234.27 ± 4.33, 257.1 ± 6.43, 267.7 ± 8.43, 269.0 ± 8.56 Ni for Co, Zn, Mn, Cu, and Ni complexes, respectively, while IC50 value were found to be 29.63 ± 2.76, 31.13 ± 1.41, 35.16 ± 2.45, 43.53 ± 3.12, 57.71 ± 2.61 μM for Cu, Zn, Mn, Co and Ni complexes, respectively, for DPPH radical scavenging activity. These synthesized metal complexes were found to be better active than standards Rutin (IC50 = 294.46 μM) for anti-glycation, and tert-butyl-4-hydroxyanisole (IC50 = 44.7 μM) for DPPH radical scavenging activity.  相似文献   

2.
Thiosemicarbazone ligand, 2‐((4,9‐dimethoxy‐5‐oxo‐5H‐furo[3,2‐g]chromen‐6‐yl)methylene) hydrazinecarbothioamide and its Cd(II), Cu(II), Zn(II), Ni(II), Co(II), VO(II), and Mn(II) complexes have been prepared and characterized by various spectroscopic and analytical techniques. Complexes molar conductance measurements displayed that all complexes (2–8) are non‐electrolyte. With general composition [M(H3L)(CH3COO)2H2O].nH2O, where M = Cd(II), Cu(II), Zn(II), Ni(II), Co(II) and Mn(II) while complex (8) has [VO(H3L)(SO4)H2O].2H2O formula. Based on analytical and spectral measurements, the octahedral or distorted octahedral geometries suggested for complexes. Ligand and complexes anti‐proliferative activities were assessed against three various human tumor cell lines including breast cancer (MCF‐7), liver cancer (HepG2) and lung cancer (A549) using SRB fluorometric assay and cis‐platin as positive control. The anti‐proliferative activity result indicated that the ligand and its complexes have considerable anti‐proliferative activity analogous to that of ordinarily utilized anti‐cancer drug (cis‐platin). They do their anti‐cancer activities by modifying free radical's generation via raising the superoxide dismutase activity and depletion of intracellular reduced glutathione level, catalase, glutathione peroxidase activities, escorted by highly generation of hydrogen peroxide, nitric oxide and other free radicals leading to tumor cells death, as monitoring by decreasing the protein and nucleic acids synthesis.  相似文献   

3.
Nine new mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO2(VI) complexes of lomefloxacin drug were synthesized. The structures of these complexes were elucidated by elemental analyses, IR, XRD, UV–vis, 1H NMR as well as conductivity and magnetic susceptibility measurements and thermal analyses. The dissociation constants of lomefloxacin and stability constants of its binary complexes have been determined spectrophotometrically in aqueous solution at 25 ± 1 °C and at 0.1 M KNO3 ionic strength. The discussion of the outcome data of the prepared complexes indicate that the lomefloxacin ligand behaves as a neutral bidentate ligand through OO coordination sites and coordinated to the metal ions via the carbonyl oxygen and protonated carboxylic oxygen with 1:1 (metal:ligand) stoichiometry for all complexes. The molar conductance measurements proved that the complexes are electrolytes. The powder XRD study reflects the crystalline nature for the investigated ligand and its complexes except Mn(II), Zn(II) and UO2(II). The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first steps followed by decomposition of the anions, coordinated water and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats–Redfern and Horowitz–Metzger methods. A comparative study of the inhibition zones of the ligand and its metal complexes indicates that metal complexes exhibit higher antibacterial effect against one or more bacterial species than the free LFX ligand. The antifungal and anticancer activities were also tested. The antifungal effect of almost metal complexes is higher than the free ligand. LFX, [Co(LFX)(H2O)4]·Cl2 and [Zn(LFX)(H2O)4]·Cl2 were found to be very active with IC50 values 14, 11.2 and 43.1, respectively. While, other complexes had been found to be inactive at lower concentration than 100 μg/ml.  相似文献   

4.
Acetate and perchlorate dinuclear metal complexes of Co(II), Cu(II) and Zn(II) with the cresolate polypodal ligand having mixed phenolate and pyridyl pendant functionalities, H3L, have been synthesized. The complexes were characterized by microanalysis, LSI mass spectrometry, IR, UV–Vis spectroscopy, magnetic studies and conductivity measurements. Crystal structures of H3L, [Cu2(HL)(OAc)(H2O)2](OAc)·1.5H2O and [Zn2L(CH3OH)3](ClO4)CH3OH·2H2O complexes, have been also determined.  相似文献   

5.
Two novel heterocyclic ligands, 2‐[(5‐fluoro‐1,3‐benzothiazol‐2‐yl)amino]naphthalene‐1,4‐dione (HL1) and 2‐[(5‐methyl‐1,3‐benzothiazol‐2‐yl)amino]naphthalene‐1,4‐dione (HL2), and their Pd(II), Ni(II) and Co(II) complexes were prepared and characterized using 1H NMR, 13C NMR, infrared and UV–visible spectroscopic techniques, elemental analysis, magnetic susceptibility, thermogravimetry and molar conductance measurements. The infrared spectral data showed that the chelation behaviours of the ligands towards the transition metal ions were through one of the carbonyl oxygen and deprotonated nitrogen atom of the secondary amine group. Molar conductance results confirmed that the complexes are non‐electrolytes in dimethylsulfoxide. The geometries of the complexes were deduced from magnetic susceptibility and UV–visible spectroscopic results. Second‐order perturbation analysis using density functional theory calculation revealed a stronger intermolecular charge transfer between ligand and metal ion in [NiL1(H2O)2(CH3COO‐)] and CoL1 compared to the other complexes. The in vitro antibacterial activity of the compounds against some clinically isolated bacteria strains showed varied activities. [NiL1(H2O)2(CH3COO‐)] exhibited the best antibacterial results with a minimum inhibitory concentration of 50 μg mL?1. The molecular interactions of the compounds with various drug targets of some bacterial organisms were established in a bid to predict the possible mode of antibacterial action of the compounds. The ferrous ion chelating ability of the ligands indicated that HL1 is a better Fe2+ ion chelator, with an IC50 of 29.79 μg mL?1, compared to HL2 which had an IC50 of 98.26 μg mL?1.  相似文献   

6.
The present work describes the preparation and characterization of some metal ion complexes derived from 4-formylpyridine-4 N-(2-pyridyl)thiosemicarbazone (HFPTS). The complexes have the formula; [Cd(HFPTS)2H2O]Cl2, [CoCl2(HPTS)]·H2O, [Cu2Cl4(HPTS)]·H2O, [Fe (HPTS)2Cl2]Cl·3H2O, [Hg(HPTS)Cl2]·4H2O, [Mn(HPTS)Cl2]·5H2O, [Ni(HPTS)Cl2]·2H2O, [UO2(FPTS)2(H2O)]·3H2O. The complexes were characterized by elemental analysis, spectral (IR, 1H-NMR and UV–Vis), thermal and magnetic moment measurements. The neutral bidentate coordination mode is major for the most investigated complexes. A mononegative bidentate for UO2(II), and neutral tridentate for Cu(II). The tetrahedral arrangement is proposed for most investigated complexes. The biological investigation displays the toxic activity of Hg(II) and UO2(II) complexes, whereas the ligand displays the lowest inhibition activity toward the most investigated microorganisms.  相似文献   

7.
The synthesis and characterization of new transition metal complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with 3‐(2‐hydroxynaph‐1‐ylazo)‐1,2,4‐triazole ( HL1 ) and 3‐(2‐hydroxy‐3‐carboxynaph‐1‐ylazo)‐1,2,4‐triazole ( HL2 ) have been carried out. Their structures were confirmed by elemental analyses, thermal analyses, spectral and magnetic data. The IR and 1H NMR spectra indicated that HL1 and HL2 coordinated to the metal ions as bidentate monobasic ligands via the hydroxyl O and azo N atoms. The UV‐Vis, ESR spectra and magnetic moment data revealed the formation of octahedral complexes [Mn L1 (AcO)(H2O)3] ( 1 ), [Co L1 (AcO)(H2O)3]·H2O ( 2 ), [Mn L2 (AcO)(H2O)3] ( 6 ) and [Co L2 (AcO)(H2O)3] ( 7 ), [Ni L1 (AcO)(H2O)] ( 3 ), [Zn L1 (AcO)(H2O)]·H2O ( 5 ), [Ni L2 (AcO)(H2O)] ( 8 ), [Zn L2 (AcO)(H2O)]·10H2O ( 10 ) have tetrahedral geometry, whereas [Cu L1 (AcO)(H2O)2] ( 4 ) and [Cu L2 (AcO)(H2O)2]·5H2O ( 9 ) have square pyramidal geometry.. The mass spectra of the complexes under EI‐con‐ ditions showed the highest peaks corresponding to their molecular weights, based on the atomic weights of 55Mn, 59Co, 58Ni, 63Cu and 64Zn isotopes; besides, other peaks containing other isotopes distribution of the metal. Kinetic and thermodynamic parameters of the thermal decomposition stages were computed from the thermal data using Coats‐Redfern method. HL2 and complexes 6 – 10 were found to have moderate antimicrobial activities against Staphylococcus aureus (gram positive), Escherichia coli (gram negative) and Salmonella sp bacteria, and antifungal activity against Fusarium oxysporum, Aspergillus niger and Candida albicans. Also, in most cases, metallation increased the activity compared with the free ligand.  相似文献   

8.
Four new complexes of Au(III), Pd(II), Ni(II), and Cu(II) ions were synthesized, derived from a novel heterocyclic ligand (L) that has both triazole and tetrazole rings. The ligand synthesis was through successive steps to achieve both heterocyclic rings. The synthesized compounds were characterized using conventional techniques like infrared, ultra violet—visible and proton/carbon nuclear magnetic resonance spectroscopy, metal and thermal analyses, and molar conductivity. All complexes were suggested to have square planar geometry, gold, nickel, and palladium complexes were salts while copper neutral complexes have the chemical formulas; [AuL2]Cl.2H2O, [PdL2]Cl2.2H2O, [NiL2]Cl2.2H2O, and [CuL2]. The cytotoxic effect was studied on breast cancer cell line (MCF‐7 cell line) at different concentrations by using the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay method, for the ligand (L) and complexes. The results showed that gold(III) and nickel(II) complexes have the highest cytotoxicity among all compounds against cancer cell lines.  相似文献   

9.
1,6-Bis(2-formylphenyl) hexane (I) was derived from 1,6-dibromohexane with salicylaldehyde and K2CO3 and the ligand (L) was derived from compound I and 2,6-diaminopyridine. Then, the Cu(II), Ni(II), Pb(II), Zn(II), Cd(II), and La(III) complexes with L were synthesized by the reaction of this ligand and Cu(NO3)2 · 3H2O, Ni(NO3)2 · 6H2O, Pb(NO3)2, Zn(NO3)2 · 6H2O, Cd(NO3)2 · 6H2O, and La(NO3)3 · 6H2O, respectively. The ligand and its metal complexes were characterized by elemental analysis, IR, 1H and 13C NMR, UV-Vis spectra, magnetic susceptibility, conductivity measurements, and mass spectra. All complexes are diamagnetic and the Cu(II) complex is binuclear. The article is published in the original.  相似文献   

10.
A new macrocyclic ligand, 1,3,5-triaza-2,4:7,8:16,17-tribenzo-9,12,15-trioxacyclooktadeca-1,5-dien (L) was synthesized by reaction of 2,6-diaminopyridine and 1,7-bis(2-formylphenyl)-1,4,7-trioxaheptane. Then, its Cu(II), Ni(II), Pb(II), Co(III) and La(III) complexes were synthesized by template effect by reaction of 2,6-diaminopyridine and 1,7-bis(2-formylphenyl)-1,4,7-trioxaheptane and Cu(NO3)2 · 3H2O, Ni(NO3)2 · 6H2O, Pb(NO3)2, Co(NO3)2 · 6H2O, La(NO3)3 · 6H2O, respectively. The ligand and its metal complexes have been characterized by elemental analysis, IR, 1H and 13C NMR, UV–Vis spectra, magnetic susceptibility, thermal gravimetric analysis, conductivity measurements, mass spectra and cyclic voltammetry. All complexes are diamagnetic and Cu(II) complex is binuclear. The Co(II) was oxidized to Co(III). The comparative electrochemical studies show that the nickel complex exhibited a quasi-reversible one-electron reduction process while copper and cobalt complexes gave irreversible reduction processes in DMSO solution.  相似文献   

11.
A new ligand, 2‐aminonicotinaldehyde N‐methyl thiosemicarbazone (ANMTSC) and its metal complexes [Co(II) ( 1 ); Ni(II) ( 2 ); Cu(II) ( 3 ); Zn(II) ( 4 ); Cd(II) ( 5 ) or Hg(II) ( 6 )] were synthesized. The compounds were characterized by analytical methods and various spectroscopic (infrared, magnetic, thermal, 1H, 13C NMR, electronic and ESR) tools. The structure of ANMTSC ligand was confirmed by single crystal X‐ray diffraction study. The spectral data of metal complexes indicate that the ligand acts as mononegative, bidentate coordination through imine nitrogen (N) and thiocarbonyl sulphur (S?) atoms. The proposed geometries for complexes were octahedral ( 1 – 2 ), distorted octahedral ( 3 ) and tetrahedral ( 4 – 6 ). Computational details of theoretical calculations (DFT) of complexes have been discussed. The compounds were subjected to antimicrobial, antioxidant, antidiabetic, anticancer, ROS, studies and EGFR targeting molecular docking analysis. Complex 5 has shown excellent antibacterial activity and the complexes 2 and 5 have shown good antifungal activity. The complexes 1 and 4 displayed good antioxidant property with IC50 values of 11.17 ± 1.92 μM and 10.79 ± 1.85 μM, respectively compared to standard. In addition, in vitro anticancer activity of the compounds was investigated against HeLa, MCF‐7, A549, IMR‐32 and HEK 293 cell lines. Among all the compounds, complex 4 was more effective against HeLa (IC50 = 10.28 ± 0.69 μM), MCF‐7 (IC50 = 9.80 ± 0.83 μM), A549 (IC50 = 11.08 ± 0.57 μM) and IMR‐32 (10.41 ± 0.60 μM) exhibited superior anticancer activity [IC50 = 9.80 ± 0.83 ( 4 ) and 9.91 ± 0.37 μM ( 1 )] against MCF‐7 compared with other complexes.  相似文献   

12.
Among all the bio‐metals, zinc and copper derivatives of ONS donor thiosemicarbazone have aroused great interest because of their potential biological applications. Multisubstituted thiosemicarbazone ligand H2dspt (3,5‐dichlorosalicylaldehyde‐N4‐phenylthiosemicarbazone) derived new ternary complexes like [Zn(dspt)(phen)]?DMF ( 1 ) and [Cu(dspt)(phen)]?DMF ( 2 ), and another thiosemicarbazone, H2dsct (3,5‐dichlorosalicylaldehyde‐N4‐cyclohexylthiosemicarbazone), derived [Cu(dsct)(bipy)]?DMF ( 3 ). These complexes have been characterized by elemental analysis (CHNS), Fourier transform infrared (FT‐IR), ultraviolet–visible (UV–Vis) and proton nuclear magnetic resonance (1H‐NMR) spectra. The structures of the complexes were obtained by single‐crystal X‐ray diffraction analysis. Compounds 1 and 2 got crystallized in the monoclinic P21/c space group. The complexes showed interesting supramolecular interaction, which in turn stabilizes the complexes. The ground state electronic configurations of the complexes were studied using the B3LYP/LANL2DZ basis set, and ESP plots of complexes were investigated. The interaction of the complexes with calf thymus DNA (CT‐DNA) was studied using absorption and fluorescence spectroscopic methods. A UV study of the interaction of the complexes with calf thymus DNA (CT‐DNA) has shown that the complexes can effectively bind to CT‐DNA, and [Cu(dspt)(phen)]·DMF ( 2 ) exhibited the highest binding constant to CT‐DNA (Kb = 3.7 × 104). Fluorescence spectral studies also indicated that Complex 2 binds relatively stronger with CT DNA through intercalative mode, exhibiting higher binding constant (Kq = 4.7 × 105). The DNA cleavage result showed that the complexes are capable of cleaving the DNA without the help of any external agent. Molecular docking studies were carried out to understand the binding of complexes with the molecular target DNA. Complex 2 exhibited the highest cytotoxicity against human breast cancer cell line MD‐MBA‐231 (IC50 = 23.93 μg/mL) as compared to Complex 1 (IC50 = 44.40 μg/mL) .  相似文献   

13.
ILHAN  Salih TEMEL  Hamdi KILIC  Ahmet 《中国化学》2007,25(10):1547-1550
Six new macrocyclic complexes were synthesized by a template reaction of 1,4-bis(2-formylphenoxy)butane with diamines and Cu(NO3)2·3H2O and their structures were proposed on the basis of elemental analysis, FT-IR, UV-Vis, magnetic susceptibility measurements, molar conductivity measurements and mass spectra. The metal to ligand molar ratios of the Cu(Ⅱ) complexes were found to be 1 : 1. The Cu(Ⅱ) complexes are 1 : 2 electrolytes as shown by their molar conductivities (∧m) in DMF at 10^-3 mol·L^-1. Due to the existence of free ions the Cu(Ⅱ) complexes are electrically conductive. Their configurations were proposed to be probably distorted octahedral.  相似文献   

14.
《中国化学会会志》2017,64(3):261-281
A new Schiff base was prepared from the reaction of 4,4′‐methylenedianiline with 2‐benzoylpyridine in 1:2 molar ratio, as well as its different metal chelates. The structures of the ligand and its metal complexes were studied by elemental analyses, spectroscopic methods (infrared [IR ], ultraviolet–visible [UV –vis], 1H nuclear magnetic resonance [NMR ], electron spin resonance [ESR ]), magnetic moment measurements, and thermal studies. The ligand acts as tetradentate moiety in all complexes. Octahedral geometry was suggested for Mn(II ), Cu(II ), Cr(III ), and Zn(II ) chloride complexes and pentacoordinated structure and square planar geometry for Co(II ), Ni(II ), Cu(NO3 )2, CuBr2 , and Pd(II ) complexes. ESR spectra of copper(II ) complexes ( 4 )–( 6 ) at room temperature display rhombic symmetry for complex ( 4 ) and axial type symmetry for complexes ( 5 ) and ( 6 ), indicating ground state for Cu(II ) complexes. The derivative thermogravimetric (DTG ) curves of the ligand and its metal complexes were analyzed by using the rate equation to calculate the thermodynamic and kinetic parameters, which indicated strong binding of the ligand with the metal ion in some complexes. Also, some of these compounds were screened to establish their potential as anticancer agents against the human hepatic cell line Hep‐G2 . The obtained IC50 value of the copper(II ) bromide complex (4.34 µg/mL ) is the highest among the compounds studied.  相似文献   

15.
New Cu(II), Ni(II), Co(II), and Mn(II) complexes of the gabapentin (Gpn) bidentate drug ligand were synthesized and studied using elemental analyses, melting temperatures, molar conductivity, UV–Vis, magnetic measurements, FTIR, and surface morphology (scanning (SEM) and transmission (TEM) electron microscopes).The gabapentin ligand was shown to form monobasic metal:ligand (1:1) stoichiometry complexes with the metal ions Cu(II), Ni(II), Co(II), and Mn(II). Molar conductance measurements in dimethyl-sulfoxide solvent with a concentration of 10−3 M correlated to a non-electrolytic character for all of the produced complexes. A deformed octahedral environment was proposed for all metal complexes. Through the nitrogen atom of the –NH2 group and the oxygen atom of the carboxylate group, the Gpn drug chelated as a bidentate ligand toward the Mn2+, Co2+, Ni2+, and Cu2+ metal ions. This coordination behavior was validated by spectroscopic, magnetic, and electronic spectra using the formulas of the [M(Gpn)(H2O)3(Cl)]·nH2O complexes (where n = 2–6).Transmission electron microscopy was used to examine the nanostructure of the produced gabapentin complexes. Molecular docking was utilized to investigate the comparative interaction between the Gpn drug and its four metal [Cu(II), Ni(II), Co(II), and Mn(II)] complexes as ligands using serotonin (6BQH) and dopamine (6CM4) receptors. AutoDock Vina results were further refined through molecular dynamics simulation, and molecular processes for receptor–ligand interactions were also studied. The B3LYP level of theory and LanL2DZ basis set was used for DFT (density functional theory) studies. The optimized geometries, along with the MEP map and HOMO → LUMO of the metal complexes, were studied.  相似文献   

16.
Eight novel Pt(II), Pd(II), Cu(II) and Zn(II) complexes with 4’‐substituted terpyridine were synthesized and characterized by elemental analysis, UV, IR, NMR, electron paramagnetic resonance, high‐resolution mass spectrometry and molar conductivity measurements. The cytotoxicity of these complexes against HL‐60, BGC‐823, KB and Bel‐7402 cell lines was evaluated by MTT assay. All the complexes displayed cytotoxicity with low IC50 values (<20 μm ) and showed selectivity. Complexes 3 , 5 , 7 and 8 exerted 9‐, 5‐, 12‐ and 7‐fold higher cytotoxicity than cisplatin against Bel‐7402 cell line. The cytotoxicity of complexes 3 , 5 , 6 , 7 and 8 was higher than that of cisplatin against BGC‐823 cell line. Complexes 3 , 7 and 8 showed similar cytotoxicity to cisplatin against KB cell line. Complex 7 exhibited higher cytotoxicity than cisplatin against HL‐60 cell line. Among these complexes, complex 7 demonstrated the highest in vitro cytotoxicity, with IC50 values of 1.62, 3.59, 2.28 and 0.63 μm against HL‐60, BGC‐823, Bel‐7402 and KB cells lines, respectively. The results suggest that the cytotoxicity of these complexes is related to the nature of the terminal group of the ligand, the metal center and the leaving groups. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A naringenin Schiff-base ligand (H3L) and its three complexes, MHL . nH2O (M = Zn and Cu, n = 0.5) and NiH2LOAc . 3.5H2O, have been synthesized and characterized on the basis of elemental analysis, molar conductivity and i.r. spectrum, 1H-n.m.r., u.v. spectra and thermal analyses. In addition, the suppression ratio for O2−˙ (a) and the suppression ratio for OH˙(b) were determined by the use of spectrophotometric methods. IC50(a) and IC50(b) of the complexes are given. The results show that compared to the ligand, the complexes exhibit high activity in the suppression of O2−˙ (a) and OH˙(b).  相似文献   

18.
A new organoborate ligand, hydro(benzoyl)(phthalyl)borate has been synthesized as its potassium salt (KL) and treatment of KL with one equivalent of MCl2•6H2O gave complexes ML(H2O)x•Cl [x=2, M=Co(II), Ni(II); x=1, M=Cu(II)]. All compounds were characterized by elemental analysis, FTIR, 1H NMR, ESI MS, UV-Vis techniques, conductivity and magnetic data measurements. Spectroscopic results suggest a square planar geometry in the Cu(II) complex, while the Co(II) and Ni(II) complexes possess an octahedral geometry. Antibacterial activities (in vitro) of the ligand and its metal complexes were studied against two Gram positive (B. subtillis and B. magterium) and two Gram negative bacteria (E. Coli and S. boydi) at a single concentration (75 μg/mL) by using the Disc diffusion method. Antifungal activities (in vitro) were also checked for the compounds by using the same method against Candida albicans 10261, Penicillium sp. and Asperjillius niger., at a single concentration (50 μg/mL). The results showed that all the metal complexes, specially the nickel(II) complex, have higher antibacterial and antifungal activities than the corresponding potassium salt.  相似文献   

19.
Complexes of the type [M(painh)(H2O)2X], where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); X = Cl2 or SO4; painh = p-amino acetophenone isonicotinoyl hydrazone, have been synthesized and characterized by spectral and other physico-chemical techniques. The synthesized complexes are stable powders, insoluble in common organic solvents such as ethanol, benzene, carbon tetrachloride, chloroform and diethyl ether, and are non-electrolytes. Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) studies show that the organic ligand decomposes exothermically through various steps. TGA and Infrared (IR) spectral studies indicate the presence of coordinated water in the metal complexes. Magnetic susceptibility measurements and electronic spectra suggest that Mn(II), Co(II), and Ni(II) complexes are paramagnetic with octahedral geometry, whereas Cu(II) complexes have distorted octahedral geometry. The neutral bidentate ligand bonds through >C=O and >C=N–groups in all the complexes. Electron Spin Resonance (ESR) spectra in the solid state show axial symmetry for [Cu(painh)(H2O)2(SO4)] and elongated rhombic symmetry for [Cu(painh)(H2O)2Cl2], suggesting an elongated tetragonally-distorted octahedral structure for both complexes. X-ray powder diffraction parameters for two complexes correspond to tetragonal and orthorhombic crystal lattices. The metal complexes show fair antifungal activity against Rizoctonia sp., Aspergillus sp., Stemphylium sp., and Penicillium sp. and appreciable antibacterial activity against Pseudomonas sp. and Escherichia coli.  相似文献   

20.
A bidentate NO donor Schiff base, 2-(((2-chloro-5- (trifluoromethyl)phenyl)imino)methyl) phenol ( HL 1 ) and its complexes [Co(L1)2(H2O)2] ( 1 ), [Cu(L1)2] ( 2 ), [Mn(L1)2(H2O)2] ( 3 ), [Ni(L1)2(H2O)2] ( 4 ), [Pd2(L1)2(OAc)2·1.16H2O] ( 5 ), [Pt(L1)2] ( 6 ) were synthesized and characterized by different physico-chemical techniques including elemental and thermal analysis, magnetic susceptibility measurements, molar electric conductivity, IR, 1H-NMR, 13C-NMR, UV–Vis, mass spectroscopies and X-ray powder diffraction (XRD). The molecular structures of ligand HL 1 and two complexes ( 2 and 5 ) were confirmed by X-ray crystallography analysis on the monocrystal. In this complexes, the metal ions are in distorted square-planar environments. The copper (II) complex is mononuclear and crystallized in a monoclinic space group P21/c, whereas palladium (II) complex is dinuclear and crystallized in the trigonal crystal system R-3. The toxicity of the ligand and complexes was evaluated on both plant and animal cells, using the plant species Triticum aestivum L. and the crustacean Artemia franciscana Kellogg. At concentrations up to 100 μM the compounds presented very little toxicity on Artemia franciscana Kellogg. Moreover, the palladium (II) complex was devoid of any toxicity on the plant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号