首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two asymmetrical twistacenes, PyPT and PyPS , have been synthesized and characterized. Single crystal X‐ray analyses show that both of them have twisted structures with a torsion angle of 26.65° for PyPT and 26.59° for PyPS measured between plane C5‐C23‐C25 and plane C13‐C15‐C26. The thiophene/selenophene‐fused acenes emit blue fluorescence with quantum yields of 0.39 for PyPT and 0.04 for PyPS in organic solvents, whereas the all‐carbon molecule HBP emits green fluorescence. Meanwhile, PyPT and PyPS show a similar reversible oxide procedure with the onset potentials of 0.73 and 0.72 V, respectively. In addition, PyPT and PyPS can self‐assemble to form nanoparticles in a mixture of THF/H2O through re‐precipitation method.  相似文献   

2.
N‐substituted heteroacenes have been widely used as electroactive layers in organic electronic devices, and only a few of them have been investigated in organic resistive memory devices. Here, a novel N‐substituted heteroacene 2‐(4′‐(diphenylamino)phenyl)‐4,11‐bis((triisopropylsilyl)ethynyl)‐1H‐imidazo[4,5‐b]phenazine ( DBIP ) has been designed, synthesized, and characterized. Sandwich‐structure memory devices based on DBIP have been fabricated and the devices show non‐volatile and stable memory character with good endurance performance.  相似文献   

3.
《化学:亚洲杂志》2017,12(14):1736-1748
Five centrosymmetric and one dipolar pyrrolo[3,2‐b ]pyrroles, possessing either two or one strongly electron‐withdrawing nitro group have been synthesized in a straightforward manner from simple building blocks. For the symmetric compounds, the nitroaryl groups induced spontaneous breaking of inversion symmetry in the excited state, thereby leading to large solvatofluorochromism. To study the origin of this effect, the series employed peripheral structural motifs that control the degree of conjugation via altering of dihedral angle between the 4‐nitrophenyl moiety and the electron‐rich core. We observed that for compounds with a larger dihedral angle, the fluorescence quantum yield decreased quickly when exposed to even moderately polar solvents. Reducing the dihedral angle (i.e., placing the nitrobenzene moiety in the same plane as the rest of the molecule) moderated the dependence on solvent polarity so that the dye exhibited significant emission, even in THF. To investigate at what stage the symmetry breaking occurs, we measured two‐photon absorption (2PA) spectra and 2PA cross‐sections (σ2PA) for all six compounds. The 2PA transition profile of the dipolar pyrrolo[3,2‐b ]pyrrole, followed the corresponding one‐photon absorption (1PA) spectrum, which provided an estimate of the change of the permanent electric dipole upon transition, ≈18 D. The nominally symmetric compounds displayed an allowed 2PA transition in the wavelength range of 700–900 nm. The expansion via a triple bond resulted in the largest peak value, σ2PA=770 GM, whereas altering the dihedral angle had no effect other than reducing the peak value two‐ or even three‐fold. In the S 0S 1 transition region, the symmetric structures also showed a partial overlap between 2PA and 1PA transitions in the long‐wavelength wing of the band, from which a tentative, relatively small dipole moment change, 2–7 D, was deduced, thus suggesting that some small symmetry breaking may be possible in the ground state, even before major symmetry breaking occurs in the excited state.  相似文献   

4.
We describe the synthesis as well as the optical and charge‐transport properties of a series of donor–acceptor (D‐A) ladder‐type heteroacenes. These molecules are stable, soluble, and contain up to 24 fused rings. Structural analyses indicated that the backbones of S 10r and Se 10r are bent in single crystals. The three 10‐ring heteroacenes were functionalized with thiol anchoring groups and used for single‐molecular conductance measurements. The highest conductance was observed for molecular wires containing a benzoselenadiazole (BSD) moiety, which exhibits the narrowest band gap. Multiple charge‐transport pathways were observed in molecular wires containing either benzothiadiazole (BTD) or BSD. The conductance is a complex function of both energy gap and orbital alignment.  相似文献   

5.
6.
The encapsulation of tetracyanoquinodimethane (TCNQ) and fluorescent probe acridinium ions (AcH+) by diethylpyrrole‐bridged bisporphyrin (H4DEP) was used to investigate the structural and spectroscopic changes within the bisporphyrin cavity upon substrate binding. X‐ray diffraction studies of the bisporphyrin host (H4DEP) and the encapsulated host–guest complexes (H4DEP ? TCNQ and [H4DEP ? AcH]ClO4) are reported. Negative and positive shifts of the reduction and oxidation potentials, respectively, indicated that it was difficult to reduce/oxidize the encapsulated complexes. The emission intensities of bisporphyrin, upon excitation at 560 nm, were quenched by about 65 % and 95 % in H4DEP ? TCNQ and [H4DEP ? AcH]ClO4, respectively, owing to photoinduced electron transfer from the excited state of the bisporphyrin to TCNQ/AcH+; this result was also supported by DFT calculations. Moreover, the fluorescence intensity of encapsulated AcH+ (excited at 340 nm) was also remarkably quenched compared to the free ions, owing to photoinduced singlet‐to‐singlet energy transfer from AcH+ to bisporphyrin. Thus, AcH+ acted as both an acceptor and a donor, depending on which part of the chromophore was excited in the host–guest complex. The electrochemically evaluated HOMO–LUMO gap was 0.71 and 1.42 eV in H4DEP ? TCNQ and [H4DEP ? AcH]ClO4, respectively, whilst the gap was 2.12 eV in H4DEP. The extremely low HOMO–LUMO gap in H4DEP ? TCNQ led to facile electron transfer from the host to the guest, which was manifested in the lowering of the CN stretching frequency (in the solid state) in the IR spectra, a strong radical signal in the EPR spectra at 77 K, and also the presence of low‐energy bands in the UV/Vis spectra (in the solution phase). Such an efficient transfer was only possible when the donor and acceptor moieties were in close proximity to one another.  相似文献   

7.
The transformation of trichalcogenasumanene buckybowls into donor–acceptor‐type [5‐6‐7] fused polyheterocycles is disclosed. The strategy involves a highly efficient ring‐opening of the flanking benzene upon oxidation at room temperature, and facile ring closure by functional‐group transformation. Crystallographic studies indicate that the resulting [5‐6‐7] fused polyheterocycles possess a planar conformation owing to the release of ring strain by expansion of one of the six‐membered flanking rings to the seven‐membered one. Additionally, the [5‐6‐7] fused polyheterocycles bear electron‐withdrawing groups, which reduce the HOMO–LUMO energy gap, and display broad absorption bands extending to λ=590 nm. Consequently, these compounds show strong red emission with fluorescence quantum yields of up to 38 %.  相似文献   

8.
Aryl‐substituted 1,1,4,4‐tetracyano‐1,3‐butadienes (FcTCBDs) and bis(1,1,4,4‐tetracyanobutadiene)s (bis‐FcTCBDs), possessing a ferrocenyl group on each terminal, were prepared by the reaction of a variety of alkynes with tetracyanoethylene (TCNE) in a [2+2] cycloaddition reaction, followed by retro‐electrocyclization of the initially formed [2+2] cycloadducts (i.e., cyclobutene derivatives). The characteristic intramolecular charge transfer (ICT) between the donor (ferrocene) and acceptor (TCBD) moieties were investigated by using UV/Vis spectroscopy. The redox behaviors of FcTCBDs and bis‐FcTCBDs were examined by cyclic voltammetry (CV) and differential pulse voltammetry (DPV), which revealed their properties of multi‐electron transfer depending on the number of ferrocene and TCBD moieties. Moreover, significant color changes were observed by visible spectroscopy under the electrochemical reduction conditions.  相似文献   

9.
A novel small‐molecule boron(III)‐containing donor–acceptor compound has been synthesized and employed in the fabrication of solution‐processable electronic resistive memory devices. High ternary memory performances with low turn‐on (VTh1=2.0 V) and distinct threshold voltages (VTh2=3.3 V), small reading bias (1.0 V), and long retention time (>104 seconds) with a large ON/OFF ratio of each state (current ratio of “OFF”, “ON1”, and “ON2”=1:103:106) have been demonstrated, suggestive of its potential application in high‐density data storage. The present design strategy provides new insight in the future design of memory devices with multi‐level transition states.  相似文献   

10.
Embedding endohdedral metallofullerenes (EMFs) into electron donor–acceptor systems is still a challenging task owing to their limited quantities and their still largely unexplored chemical properties. In this study, we have performed a 1,3‐dipolar cycloaddition reaction of a corrole‐based precursor with Sc3N@C80 to regioselectively form a [5,6]‐adduct ( 1 ). The successful attachment of the corrole moiety was confirmed by mass spectrometry. In the electronic ground state, absorption spectra suggest sizeable electronic communications between the electron acceptor and the electron donor. Moreover, the addition pattern occurring at a [5,6]‐bond junction is firmly proven by NMR spectroscopy and electrochemical investigations performed with 1 . In the electronically excited state, which is probed in photophysical assays with 1 , a fast electron‐transfer yields the radical ion pair state consisting of the one‐electron‐reduced Sc3N@C80 and of the one‐electron‐oxidized corrole upon its exclusive photoexcitation. As such, our results shed new light on the practical work utilizing EMFs as building blocks in photovoltaics.  相似文献   

11.
Five new multi‐branched two‐photon absorption triazine chromophores ( T1 – T5 ) with different donor strength, conjugation length, and direction of charge transfer have been designed and synthesized. The one‐photon fluorescence, fluorescence quantum yields, and two‐photon properties have been investigated. The two‐photon absorption (2PA) cross sections measured by the open aperture Z‐scan technique were determined to be 447, 854, 1023, 603, and 766 GM for T1 , T2 , T3 , T4 , and T5 , respectively. This result indicates that their 2PA cross section values (σ) increase with increasing electron‐donating strength of the end group, extending the conjugation length of the system, and introducing electron‐withdrawing perfluoroalkyl as side groups to the end donor. In addition, the σ value of T5 is also larger than that of T1 , which provides evidence that the σ value is relative to the direction of charge transfer (from the ends to the center of the molecule or from the center to the ends). Moreover, significant enhancement of the two‐photon absorption cross section was achieved by introducing a thiophene moiety to a conjugated CC bond. At the same time, the optical limiting behavior for these chromophores was studied by using a focused 800 nm laser beam with pulses of 140 fs duration. It was found that these molecules also exhibit good optical limiting properties. These initial results clearly demonstrate that multi‐branched triazine chromophores are a highly suitable class of two‐photon absorbing materials.  相似文献   

12.
Cup‐shaped nanocarbons (CNC) generated by the electron‐transfer reduction of cup‐stacked carbon nanotubes have been functionalized with porphyrins (H2P) as light‐capturing chromophores. The resulting donor–acceptor nanohybrid has been characterized by thermogravimetric analysis (TGA), Raman and IR spectroscopy, transmission electron microscopy, elemental analysis, and UV/Vis spectroscopy. The weight of the porphyrins attached to the cup‐shaped nanocarbons was determined as 20 % by TGA and elemental analysis. The UV/Vis absorption spectrum of CNC? (H2P)n in DMF agrees well with that obtained by the superposition of reference porphyrin (ref‐H2P) and cup‐shaped nanocarbons. The photoexcitation of the CNC? (H2P)n nanohybrid results in formation of the charge‐separated (CS) state to attain the longest CS lifetime (0.64±0.01 ms) ever reported for donor–acceptor nanohybrids, which may arise from efficient electron migration following the charge separation. The formation of a radical ion pair was detected directly by electron spin resonance (ESR) measurements under photoirradiation of CNC? (H2P)n with a high‐pressure mercury lamp in frozen DMF at 153 K. The observed ESR signal at g=2.0044 agrees with that of ref‐H2P.+ produced by one‐electron oxidation with [Ru(bpy)3]3+ in deaerated CHCl3, indicating the formation of H2P.+. The electron‐acceptor ability of the reference CNC compound (ref‐CNC) was also examined by the electron‐transfer reduction of ref‐CNC by a series of semiquinone radical anions.  相似文献   

13.
Two new oligoimides, OI(APAP-6FDA) and OI(APAN-6FDA) , which consisted of electron‐donating N‐(4‐aminophenyl)‐N‐phenyl‐1‐aminopyrene ( APAP ) or N‐(4‐aminophenyl)‐N‐phenyl‐1‐aminonaphthalene ( APAN ) moieties and electron‐accepting 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride ( 6FDA ) moieties, were designed and synthesized for application in electrical memory devices. Such devices, with the indium tin oxide (ITO)/oligoimide/Al configuration, showed memory characteristics, from high‐conductance Ohmic current flow to negative differential resistance (NDR), with corresponding film thicknesses of 38 and 48 nm, respectively. The 48 nm oligoimide film device exhibited NDR electrical behavior, which resulted from the diffusion of Al atoms into the oligoimide layer. On further increasing the film thickness to 85 nm, the OI(APAP-6FDA) film device showed a reproducible nonvolatile “write once read many” (WORM) property with a high ON/OFF current ratio (more than ×104). On the other hand, the device that was based on the 85 nm OI(APAN-6FDA) film exhibited a volatile static random access memory (SRAM) property. The longer conjugation length of the pyrene unit compared to that of a naphthalene unit was considered to be responsible for the different memory characteristics between these two oligoimides. These experimental results suggested that tunable switching behavior could be achieved through an appropriate design of the donor–acceptor oligoimide structure and controllable thickness of the active memory layer.  相似文献   

14.
15.
A solution‐processed acceptor‐π‐donor‐π‐acceptor (A‐π‐D‐π‐A) type small molecule, namely DCATT, has been designed and synthesized for the application as donor material in organic solar cells. The fused aromatic unit thieno[3,2‐b]thiophene (TT) flanked with thiophene is applied as π bridge, while 4,8‐bisthienyl substituted benzodithiophene (BDT) and 2‐ethylhexyl cyanoacetate are chosen as the central building block and end group, respectively. Introduction of fused ring to the small molecule enhances the conjugation length of the main chain, and gives a strong tendency to form π–π stacking with a large overlapping area which favors to high charge carrier transport. Small‐molecule organic solar cells based on blends of DCATT and fullerene acceptor exhibit power conversion efficiencies as high as 5.20 % under the illumination of AM 1.5G, 100 mW cm?2.  相似文献   

16.
Three small organic molecules that contained a phenothiazine backbone and triphenylamine (TPA), carbazole (CZ), or anthracene (AN) as a terminal electron donor were synthesized and fabricated in ITO/organic film/Al sandwiched memory devices. The influence of the extent of conjugation in the three molecules on the performance of their corresponding devices was investigated and the results showed that all of the fabricated devices exhibited nonvolatile ternary WORM character, whilst the switch threshold voltages decreased on moving from TPA to CZ and AN, which is promising for low‐power‐consumption data storage. These results revealed that tailoring the extent of conjugation in the terminal electron donor in the D–A molecules could effectively optimize the device performance, in particular the switch‐threshold voltage, which could be instructive for the design of low‐energy‐consumption memory materials.  相似文献   

17.
The ring‐fused thiophene derivatives benzo[c]thiophene and its precursor bicyclo[2.2.2]octadiene (BCOD) have been introduced as π‐conjugated spacers for organic push–pull sensitizers with dihexyloxy‐substituted triphenylamine as donor and cyanoacrylic acid as acceptor ( OL1 , OL2 , OL3 , OL4 , OL5 , OL6 ). The effects of the fused ring on the spectroscopic and electrochemical properties of these sensitizers and their photovoltaic performance in dye‐sensitized solar cells have been evaluated. Introduction of a binary benzo[c]thiophene and ethylenedioxy thiophene as π bridge caused a significant red shift of the characteristic intramolecular charge‐transfer band to 642 nm. It is found that the sensitizer OL3 , which contains one benzo[c]thiophene unit as π linker, gives the highest overall conversion efficiency of 5.03 % among all these dyes.  相似文献   

18.
New porphyrin sensitizers based on donor–π‐acceptor (D‐π‐A) approach have been designed, synthesized, characterized by various spectroscopic techniques and their photovoltaic properties explored. N,N′‐Diphenylamine acts as donor, the porphyrin is the π‐spacer, and either carboxylic acid or cyanoacryclic acid acts as acceptor. All compounds were characterized by using 1H NMR spectroscopy, ESI‐MS, UV–visible emission spectroscopies as well as electrochemical methods. The presence of aromatic groups between porphyrin π‐plane and acceptor group push the absorption of both Soret and Q‐bands of porphyrin towards the red region. The electrochemical properties suggests that LUMO of these sensitizers above the TiO2 conduction band. Finally, the device was fabricated using liquid redox electrolyte (I?/I3?) and its efficiency was compared with that of a leading sensitizer.  相似文献   

19.
Two novel synthetic strategies to covalently link a metallocene electron‐donor unit to a chlorin ring are presented. In one approach, pyropheophorbide a is readily converted into its 131‐ferrocenyl dehydro derivative by nucleophilic addition of the ferrocenyl anion to the 131‐carbonyl group. In another approach, the corresponding 131‐pentamethylruthenocenyl derivative is synthesised from 131‐fulvenylchlorin by a facile ligand exchange/deprotonation reaction with the [RuCp*(cod)Cl] (Cp*=pentamethylcyclopentadienyl; cod=1,5‐cyclooctadiene) complex. The resulting metallocene–chlorins exhibit reduced aromaticity, which was unequivocally supported by ring‐current calculations based on the gauge‐including magnetically induced current (GIMIC) method and by calculated nucleus‐independent chemical shift (NICS) values. The negative ring current in the isocyclic E ring suggests the antiaromatic character of this moiety and also clarifies the spontaneous reactivity of the complexes with oxygen. The oxidation products were isolated and their electrochemical and photophysical properties were studied. The ruthenocene derivatives turned out to be stable under light irradiation and showed photoinduced charge transfer with charge‐separation lifetimes of 152–1029 ps.  相似文献   

20.
Charge‐transfer (CT) complexes of near‐infrared absorbing systems have been unknown until now. Consequently, structural similarities between donor and acceptor are rather important to achieve this phenomenon. Herein, we report electron donors such as non‐fused diporphyrin‐anthracene (DP), zinc diporphyrin‐anthracene (ZnDP) and fused zinc diporphyrin‐anthracene (FZnDP) in which FZnDP absorbs in NIR region and permits a CT complex with the electron acceptor, perylene diimide (PDI ) in CHCl3 exclusively. UV/Vis‐NIR absorption, 1H NMR, NOESY and powder X‐ray diffraction analysis demonstrated that the CT complex formation occurs by π–π stacking between perylene units in FZnDP and PDI upon mixing together in a 1:1 molar concentration in CHCl3, unlike non‐fused ZnDP and DP. TEM and AFM images revealed that the CT complex initially forms nanospheres leading to nanorods by diffusion of CH3OH vapors into the CHCl3 solution of FZnDP/PDI (1:1 molar ratio). Therefore, these CT nanorods could lead to significant advances in optical, biological and ferroelectric applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号