首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As one member of the emerging class of ultrathin two‐dimensional (2D) transition‐metal dichalcogenide (TMD) nanomaterials, the ultra‐thin MoS2 nanosheet has attracted increasing research interest as a result of its unique structure and fascinating properties. Solution‐phase methods are promising for the scalable production, functionalization, hybridization of MoS2 nanosheets, thus enabling the widespread exploration of MoS2‐based nanomaterials for various promising applications. In this Review, an overview of the recent progress of solution‐processed MoS2 nanosheets is presented, with the emphasis on their synthetic strategies, functionalization, hybridization, properties, and applications. Finally, the challenges and opportunities in this research area will be proposed.  相似文献   

2.
Nanostructured metal sulfide–amine hybrid materials have attracted attention because of their unique properties and versatility as precursors for functional inorganic nanomaterials. However, large‐scale synthesis of metal sulfide–amine hybrid nanomaterials is limited by hydrothermal and solvothermal preparative reaction conditions; consequently, incorporation of such materials into functional nanomaterials is hindered. An amine molecule‐assisted refluxing method was used to synthesize highly uniform zinc sulfide⋅(diethylenetriamine)0.5 (ZnS⋅(DETA)0.5) hybrid nanosheets and nanobelts in a large scale. The obtained ZnS⋅(DETA)0.5 hybrid nanomaterials can be used as efficient precursors to fabricate functional ZnS nanomaterials and carbon encapsulated sulfur (S@C) nanocomposite cathodes for Li–S batteries.  相似文献   

3.
Metal–organic frameworks (MOFs) and MOF‐derived nanomaterials have recently attracted great interest as highly efficient, non‐noble‐metal catalysts. In particular, two‐dimensional MOF nanosheet materials possess the advantages of both 2D layered nanomaterials and MOFs and are considered to be promising nanomaterials. Herein, we report a facile and scalable in situ hydrothermal synthesis of Co–hypoxanthine (HPA) MOF nanosheets, which were then directly carbonized to prepare uniform Co@N‐Carbon nanosheets for efficient bifunctional electrocatalytic hydrogen‐evolution reactions (HERs) and oxygen‐evolution reactions (OERs). The Co embedded in N‐doped carbon shows excellent and stable catalytic performance for bifunctional electrocatalytic OERs and HERs. For OERs, the overpotential of Co@N‐Carbon at 10 mA cm?2 was 400 mV (vs. reversible hydrogen electrode, RHE). The current density of Co@N‐Carbon reached 100 mA cm?2 at an overpotential of 560 mV, which showed much better performance than RuO2; the largest current density of RuO2 that could be reached was only 44 mA cm?2. The Tafel slope of Co@N‐Carbon was 61 mV dec?1, which is comparable to that of commercial RuO2 (58 mV dec?1). The excellent electrocatalytic properties can be attributed to the nanosheet structure and well‐dispersed carbon‐encapsulated Co, CoN nanoparticles, and N‐dopant sites, which provided high conductivity and a large number of accessible active sites. The results highlight the great potential of utilizing MOF nanosheet materials as promising templates for the preparation of 2D Co@N‐Carbon materials for electrocatalysis and will pave the way to the development of more efficient 2D nanomaterials for various catalytic applications.  相似文献   

4.
Composition‐tailored Mn1?xRuxO2 2 D nanosheets and their reassembled nanocomposites with mesoporous stacking structure are synthesized by a soft‐chemical exfoliation reaction and the subsequent reassembling of the exfoliated nanosheets with Li+ cations, respectively. The tailoring of the chemical compositions of the exfoliated Mn1?xRuxO2 2 D nanosheets and their lithiated nanocomposites can be achieved by adopting the Ru‐substituted layered manganese oxides as host materials for exfoliation reaction. Upon the exfoliation–reassembling process, the substituted ruthenium ions remain stabilized in the layered Mn1?xRuxO2 lattice with mixed Ru3+/Ru4+ oxidation state. The reassembled Li–Mn1?xRuxO2 nanocomposites show promising pseudocapacitance performance with large specific capacitances of approximately 330 F g?1 for the second cycle and approximately 360 F g?1 for the 500th cycle and excellent cyclability, which are superior to those of the unsubstituted Li–MnO2 homologue and many other MnO2‐based materials. Electrochemical impedance spectroscopy analysis provides strong evidence for the enhancement of the electrical conductivity of 2 D nanostructured manganese oxide upon Ru substitution, which is mainly responsible for the excellent electrode performance of Li–Mn1?xRuxO2 nanocomposites. The results underscore the powerful role of the composition‐controllable metal oxide 2 D nanosheets as building blocks for exploring efficient electrode materials.  相似文献   

5.
In the present study, we report the synthesis of a high‐quality, single‐crystal hexagonal β‐Co(OH)2 nanosheet, exhibiting a thickness down to ten atomic layers and an aspect ratio exceeding 900, by using graphene oxide (GO) as an exfoliant of β‐Co(OH)2 nanoflowers. Unlike conventional approaches using ionic precursors in which morphological control is realized by structure‐directing molecules, the β‐Co(OH)2 flower‐like superstructures were first grown by a nanoparticle‐mediated crystallization process, which results in large 3D superstructure consisting of ultrathin nanosheets interspaced by polydimethoxyaniline (PDMA). Thereafter, β‐Co(OH)2 nanoflowers were chemically exfoliated by surface‐active GO under hydrothermal conditions into unilamellar single‐crystal nanosheets. In this reaction, GO acts as a two‐dimensional (2D) amphiphile to facilitate the exfoliation process through tailored interactions between organic and inorganic molecules. Meanwhile, the on‐site conjugation of GO and Co(OH)2 promotes the thermodynamic stability of freestanding ultrathin nanosheets and restrains further growth through Oswald ripening. The unique 2D structure combined with functionalities of the hybrid ultrathin Co(OH)2 nanosheets on rGO resulted in a remarkably enhanced lithium‐ion storage performance as anode materials, maintaining a reversible capacity of 860 mA h g?1 for as many as 30 cycles. Since mesocrystals are ubiquitous and rich in morphological diversity, the strategy of the GO‐assisted exfoliation of mesocrystals developed here provides an opportunity for the synthesis of new functional nanostructures that could bear importance in clean renewable energy, catalysis, photoelectronics, and photonics.  相似文献   

6.
Nanomaterials‐based enzyme mimetics (nanozymes) have attracted considerable interest due to their applications in imaging, diagnostics, and therapeutic treatments. Particularly, metal‐oxide nanozymes have been shown to mimic the interesting redox properties and biological activities of metalloenzymes. Here we describe an efficient synthesis of MnFe2O4 nanomaterials and show how the morphology can be controlled by using a simple co‐precipitation method. The nanomaterials prepared by this method exhibit a remarkable oxidase‐like activity. Interestingly, the activity is morphology‐dependent, with nanooctahedra (NOh) exhibiting a catalytic efficiency of 2.21×109 m ?1 s?1, the highest activity ever reported for a nanozyme.  相似文献   

7.
Two‐dimensional (2D) engineering of materials has been recently explored to enhance the performance of electrocatalysts by reducing their dimensionality and introducing more catalytically active ones. In this work, controllable synthesis of few‐layer bismuth subcarbonate nanosheets has been achieved via an electrochemical exfoliation method. These nanosheets catalyse CO2 reduction to formate with high faradaic efficiency and high current density at a low overpotential owing to the 2D structure and co‐existence of bismuth subcarbonate and bismuth metal under catalytic turnover conditions. Two underlying fast electron transfer processes revealed by Fourier‐transformed alternating current voltammetry (FTacV) are attributed to CO2 reduction at bismuth subcarbonate and bismuth metal. FTacV results also suggest that protonation of CO2.? is the rate determining step for bismuth catalysed CO2 reduction.  相似文献   

8.
Exploring advanced electrocatalysts for electrocatalytic hydrogen evolution is highly desired but remains a challenge due to the lack of an efficient preparation method and reasonable structural design. Herein, we deliberately designed novel Ag/WO3?x heterostructures through a supercritical CO2‐assisted exfoliation‐oxidation route and the subsequent loading of Ag nanoparticles. The ultrathin and oxygen vacancies‐enriched WO3?x nanosheets are ideal substrates for loading Ag nanoparticles, which can largely increase the active site density and improve electron transport. Besides, the resultant WO3?x nanosheets with porous structure can form during the electrochemical cycling process induced by an electric field. As a result, the exquisite Ag/WO3?x heterostructures show an enhanced hydrogen evolution reaction (HER) activity with a low onset overpotential of ≈30 mV, a small Tafel slope of ≈40 mV dec?1 at 10 mA cm?2, and as well as long‐term durability. This work sheds light on material design and preparation, and even opens up an avenue for the development of high‐efficiency electrocatalysts.  相似文献   

9.
The two‐dimensional carbon material graphdiyne (GDY) holds great promise as a semiconductor and porous material, however, exfoliation of bulk GDY into single‐ or few‐layered GDY in the aqueous phase remains a challenge. We report an efficient method for the damage‐free exfoliation of bulk GDY into single‐ or few‐layered GDY with high yield in an aqueous solution of inorganic salts (e.g., Li2SiF6). This was confirmed by spherical‐aberration‐corrected scanning transmission electron microscopy, scanning/transmission electron microscopy, atomic force microscopy, Fourier transform infrared/Raman spectroscopy, X‐ray photoelectron spectroscopy. The method gives high exfoliation efficiency (75 wt %) without creating additional structural defects or oxides in the exfoliated GDY. Theoretical calculations suggest that non‐covalent adsorption of the anion, diffusion of the cation, and subsequent repulsive forces between adjacent flakes are the main driving force for the efficient exfoliation.  相似文献   

10.
Two‐dimensional (2D) (hydro)oxide materials, that is, nanosheets, enable the preparation of advanced 2D materials and devices. The general synthesis route of nanosheets involves exfoliating layered metal (hydro)oxide crystals. This exfoliation process is considered to be time‐consuming, hindering their industrial‐scale production. Based on in situ exfoliation studies on the protonated layered titanate H1.07Ti1.73O4?H2O (HTO), it is now shown that ion intercalation‐assisted exfoliation driven by chemical reaction provides a viable and fast route to isolated nanosheets. Contrary to the general expectation, data indicate that direct exfoliation of HTO occurs within seconds after mixing of the reactants, instead of proceeding via a swollen state as previously thought. These findings reveal that ion intercalation‐assisted exfoliation driven by chemical reaction is a promising exfoliation route for large‐scale synthesis.  相似文献   

11.
《化学:亚洲杂志》2017,12(22):2889-2893
Bulk molybdenum disulfide (MoS2) itself is virtually insoluble in common organic solvents because of the tight stacks of multiple MoS2 nanosheets. Here we report that V‐shaped polyaromatic compounds with non‐ionic side chains can efficiently exfoliate and disperse the inorganic nanosheets. Simple grinding and sonication (less than total 1 h) of MoS2 powder with the V‐shaped compounds gave rise to large MoS2 nanosheets highly dispersed in NMP through efficient host‐guest S–π interactions. DLS and AFM analyses revealed that the lateral sizes (ca. 150–270 nm) and thicknesses (ca. 2–8 nm) of the products depend on the identity of the non‐ionic side chains on the V‐shaped dispersant.  相似文献   

12.
Synthesizing nanomaterials with anisotropic architectures, especially two‐dimensional (2D) nanosheets (NSs), is a key focus of materials science research. Metal sulfide nanosheets (MSNSs) are typically obtained involving exfoliation of bulk metal sulfides with layered structures. The synthesis of NSs of intrinsically non‐layered metal sulfides has received relatively less attention. Metal alkanethiolates with lamellar structures are now shown to serve as effective scaffolds for constructing NSs. A novel photochemical step was employed to transform 2D metal thiolates into MSNSs. By this strategy the 2D nature of metal thiolate precursors was preserved in the final products, resulting in the successful synthesis of NSs of binary PbS, CdS, and Cu9S5, as well as ternary wurtzite CuInS2, Cu2SnS3. Results encourage the wider utilization of photochemical strategies in the synthesis of anisotropic MSNSs.  相似文献   

13.
A heterogeneous material composed of MCM‐48/H5PW10V2O40 was produced and used as an efficient, eco‐friendly and highly recyclable catalyst for the one‐pot and multicomponent synthesis of 3,4‐dihydroquinoxalin‐2‐amine, diazepine‐tetrazole and benzodiazepine‐2‐carboxamide derivatives in aqueous media and at room temperature with high yields in short reaction times (40–60 min). The recoverable catalyst was easily recycled at least five times without any loss of catalytic activity. The structures of obtained products were confirmed using 1H NMR and 13C NMR spectra.  相似文献   

14.
《化学:亚洲杂志》2017,12(16):2127-2133
In this work, β‐Co(OH)2 nanosheets are explored as efficient pseudocapacitive materials for the fabrication of 1.6 V class high‐energy supercapacitors in asymmetric fashion. The as‐synthesized β‐Co(OH)2 nanosheets displayed an excellent electrochemical performance owing to their unique structure, morphology, and reversible reaction kinetics (fast faradic reaction) in both the three‐electrode and asymmetric configuration (with activated carbon, AC). For example, in the three‐electrode set‐up, β‐Co(OH)2 exhibits a high specific capacitance of ∼675 F g−1 at a scan rate of 1 mV s−1. In the asymmetric supercapacitor, the β‐Co(OH)2∥AC cell delivers a maximum energy density of 37.3 Wh kg−1 at a power density of 800 W kg−1. Even at harsh conditions (8 kW kg−1), an energy density of 15.64 Wh kg−1 is registered for the β‐Co(OH)2∥AC assembly. Such an impressive performance of β‐Co(OH)2 nanosheets in the asymmetric configuration reveals the emergence of pseudocapacitive electrodes towards the fabrication of high‐energy electrochemical charge storage systems.  相似文献   

15.
Two‐dimensional (2D) materials are known to be useful in catalysis. Engineering 3D bulk materials into the 2D form can enhance the exposure of the active edge sites, which are believed to be the origin of the high catalytic activity. Reported herein is the production of 2D “few‐layer” antimony (Sb) nanosheets by cathodic exfoliation. Application of this 2D engineering method turns Sb, an inactive material for CO2 reduction in its bulk form, into an active 2D electrocatalyst for reduction of CO2 to formate with high efficiency. The high activity is attributed to the exposure of a large number of catalytically active edge sites. Moreover, this cathodic exfoliation process can be coupled with the anodic exfoliation of graphite in a single‐compartment cell for in situ production of a few‐layer Sb nanosheets and graphene composite. The observed increased activity of this composite is attributed to the strong electronic interaction between graphene and Sb.  相似文献   

16.
We report a highly efficient Friedel–Crafts reaction of 3‐alkyl or 3‐aryl 3‐hydroxyoxindoles with a variety of aromatic and heteroaromatic compounds to unsymmetrical 3,3‐diaryloxindoles or 3‐alkyl‐3‐aryloxindoles, which are interesting medicinal targets and useful building blocks for the synthesis of natural products. Hg(ClO4)2 ? 3 H2O was identified as a powerful catalyst for this reaction, and is significantly more efficient than other screened metal perchlorate hydrates and Brønsted acids such as HOTf and HClO4. The high catalytic property of Hg(ClO4)2 ? 3 H2O originates from the unprecedented dual activation effects of aromatic mercuration, which could generate a strong protic acid to facilitate the generation of a carbocation at the C3‐position of oxindoles and simultaneously form the more reactive nucleophilic reaction partner.  相似文献   

17.
Two‐dimensional graphene–CdS (G–CdS) semiconductor hybrid nanosheets were synthesized in situ by graphene oxide (GO) quantum wells and a metal–xanthate precursor through a one‐step growth process. Incorporation of G–CdS nanosheets into a photoactive film consisting of poly[4,8‐bis‐(2‐ethyl‐hexyl‐thiophene‐5‐yl)‐benzo[1,2‐b:4,5‐b]dithiophene‐2,6‐diyl]‐alt‐[2‐(2‐ethyl‐hexanoyl)‐thieno[3,4‐b]thiophen‐4,6‐diyl] (PBDTTT‐C‐T) and [6,6]‐phenyl C70 butyric acid methyl ester (PC70BM) effectively decreases the exciton lifetime to accelerate exciton dissociation. More importantly, the decreasing energy levels of PBDTTT‐C‐T, PC70BM, and G–CdS produces versatile heterojunction interfaces of PBDTTT‐C‐T:PC70BM, PBDTTT‐C‐T:G–CdS, and PBDTTT‐C‐T:PC70BM:G–CdS; this offers multi‐charge‐transfer channels for more efficient charge separation and transfer. The charge transfer in the blend film also depends on the G–CdS nanosheet loadings. In addition, G–CdS nanosheets improve light utilization and charge mobility in the photoactive layer. As a result, by incorporation of G–CdS nanosheets into the active layer, the power‐conversion efficiency of inverted solar cells based on PBDTTT‐C‐T and PC71BM is improved from 6.0 % for a reference device without G–CdS nanosheets to 7.5 % for the device with 1.5wt % G–CdS nanosheets, due to the dramatically enhanced short‐circuit current. Combined with the advantageous mechanical properties of the PBDTTT‐C‐T:PC70BM:G–CdS active layer, the novel CdS‐cluster‐decorated graphene hybrid nanomaterials provide a promising approach to improve the device performance.  相似文献   

18.
The six‐step synthesis of the new podand‐type ligand 6,6′,6″‐[methylidenetri(1H‐pyrazole‐1,3‐diyl)]tris[pyridine‐2‐carboxylic acid] (LH3) is described. Reaction of LH3 with LnCl3 ?6 H2O (Ln=Eu, Gd, Tb) in MeOH resulted in the isolation of [LnL]?HCl complexes characterized by elemental analysis, mass and IR spectroscopy. Photophysical studies of the Eu and Tb complexes in aqueous solutions revealed the characteristic luminescence features of the metal atoms, indicative of an efficient ligand‐to‐metal energy‐transfer process. Determination of the luminescence quantum yields in H2O showed the Tb complex to be highly luminescent (?=15%), while, for the Eu complex, the quantum efficiency was only 2%. Excited‐state‐lifetime measurements in H2O and D2O evidenced the presence of ca. three H2O molecules in the first coordination sphere of the complexes. Investigation of the Gd complex allowed the determination of the ligand‐centered triplet state and showed the ligand to be well suited for energy transfer to the metal. The luminescence properties of the complexes are described, and the properties of the ligand as a suitable complexation pocket is questioned.  相似文献   

19.
Hierarchical IRMOF‐3 nanosheets were firstly fabricated by a simple reflux strategy and were then characterized through Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, transmission electron microscopy and X‐ray photoelectron spectroscopy. They revealed a high fluorescence quantum yield (13.2%) and showed excellent selectivity and sensitivity for 2,4,6‐trinitrophenol (TNP) over a concentration range of 1–29 μM in aqueous solution. This work demonstrates that the facile fabrication method for hierarchical IRMOF‐3 nanosheets with favorable selectivity and sensitivity for TNP could produce a new point of view on novel metal–organic framework nanomaterials for on‐line detection of organic pollutants in water.  相似文献   

20.
Metal–organic framework (MOF) nanosheets could serve as ideal building blocks of molecular sieve membranes owing to their structural diversity and minimized mass‐transfer barrier. To date, discovery of appropriate MOF nanosheets and facile fabrication of high performance MOF nanosheet‐based membranes remain as great challenges. A modified soft‐physical exfoliation method was used to disintegrate a lamellar amphiprotic MOF into nanosheets with a high aspect ratio. Consequently sub‐10 nm‐thick ultrathin membranes were successfully prepared, and these demonstrated a remarkable H2/CO2 separation performance, with a separation factor of up to 166 and H2 permeance of up to 8×10−7 mol m−2 s−1 Pa−1 at elevated testing temperatures owing to a well‐defined size‐exclusion effect. This nanosheet‐based membrane holds great promise as the next generation of ultrapermeable gas separation membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号