首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《化学:亚洲杂志》2017,12(12):1301-1304
Intermolecular oxidative cross‐coupling of two different enolates is one of the most useful reactions to synthesize unsymmetrical 1,4‐dicarbonyl compounds. In this study, the oxovanadium(V)‐induced intermolecular oxidative cross‐coupling of enolates afforded unsymmetrical 1,4‐dicarbonyl compounds. Various boron and silyl enolates underwent the formation of ketone–ester, ester–ketone, ester–ester, amide–ketone and amide–ester coupling products . These results clearly show the versatility of the present oxidative cross‐coupling protocol.  相似文献   

2.
3.
A direct catalytic asymmetric aldol‐type reaction of 3‐substituted‐2‐oxindoles with glyoxal derivatives and ethyl trifluoropyruvate, catalyzed by a chiral N,N′‐dioxide–Sc(OTf)3 (Tf=trifluoromethanesulfonyl) complex, has been developed that tolerates a wide range of substrates. The reaction proceeds in good yields and excellent enantioselectivities (up to 93 % yield, 99:1 diastereomeric ratio (dr), and >99 % enantiomeric excess (ee)) under mild conditions, to deliver 3‐(α‐hydroxy‐β‐carbonyl) oxindoles with vicinal quaternary–tertiary or quaternary–quaternary stereocenters. Even with 1 mol % catalyst loading or on scaleup (10 mmol of starting material), maintenance of ee was observed, which showed the potential value of the catalyst system. In studies probing the reaction mechanism, a positive nonlinear effect was observed and ScIII‐based enolate intermediates were detected by using ESIMS. On the basis of the experimental results and previous reports, a possible catalytic cycle was assumed.  相似文献   

4.
5.
Cyclopropanecarboxaldehyde ( 1 a ), cyclopropyl methyl ketone ( 1 b ), and cyclopropyl phenyl ketone ( 1 c ) were reacted with [Ni(cod)2] (cod=1,5‐cyclooctadiene) and PBu3 at 100 °C to give η2‐enonenickel complexes ( 2 a – c ). In the presence of PCy3 (Cy=cyclohexyl), 1 a and 1 b reacted with [Ni(cod)2] to give the corresponding μ‐η21‐enonenickel complexes ( 3 a , 3 b ). However, the reaction of 1 c under the same reaction conditions gave a mixture of 3 c and cyclopentane derivatives ( 4 c , 4 c′ ), that is, a [3+2] cycloaddition product of 1 c with (E)‐1‐phenylbut‐2‐en‐1‐one, an isomer of 1 c . In the presence of a catalytic amount of [Ni(cod)2] and PCy3, [3+2] homo‐cycloaddition proceeded to give a mixture of 4 c (76 %) and 4 c′ (17 %). At room temperature, a possible intermediate, 6 c , was observed and isolated by reprecipitation at ?20 °C. In the presence of 1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene (IPr), both 1 a and 1 c rapidly underwent oxidative addition to nickel(0) to give the corresponding six‐membered oxa‐nickelacycles ( 6 ai , 6 ci ). On the other hand, 1 b reacted with nickel(0) to give the corresponding μ‐η21‐enonenickel complex ( 3 bi ). The molecular structures of 6 ai and 6 ci were confirmed by X‐ray crystallography. The molecular structure of 6 ai shows a dimeric η1‐nickelenolate structure. However, the molecular structure of 6 ci shows a monomeric η1‐nickelenolate structure, and the nickel(II) 14‐electron center is regarded as having “an unusual T‐shaped planar” coordination geometry. The insertion of enones into monomeric η1‐nickelenolate complexes 6 c and 6 ci occurred at room temperature to generate η3‐oxa‐allylnickel complexes ( 8 , 9 ), whereas insertion into dimeric η1‐nickelenolate complex 6 ai did not take place. The diastereoselectivity of the insertion of an enone into 6 c having PCy3 as a ligand differs from that into 6 ci having IPr as a ligand. In addition, the stereochemistry of η3‐oxa‐allylnickel complexes having IPr as a ligand is retained during reductive elimination to yield the corresponding [3+2] cycloaddition product, which is consistent with the diastereoselectivity observed in Ni0/IPr‐catalyzed [3+2] cycloaddition reactions of cyclopropyl ketones with enones. In contrast, reductive elimination from the η3‐oxa‐allylnickel having PCy3 as a ligand proceeds with inversion of stereochemistry. This is probably due to rapid isomerization between syn and anti isomers prior to reductive elimination.  相似文献   

6.
Available α‐amino acids undergo arylation at their α position in an enantioselective manner on treatment with base of N′‐aryl urea derivatives ligated to pseudoephedrine as a chiral auxiliary. In situ silylation and enolization induces diastereoselective migration of the N′‐aryl group to the α position of the amino acid, followed by ring closure to a hydantoin with concomitant explulsion of the recyclable auxiliary. The hydrolysis of the hydantoin products provides derivatives of quaternary amino acids. The arylation avoids the use of heavy‐metal additives, and is successful with a range of amino acids and with aryl rings of varying electronic character.  相似文献   

7.
An in situ generated cationic Ir‐catalyst isomerizes simple allylic silyl ethers into valuable, fully substituted aldehyde‐derived silyl enol ethers. Importantly, by judicious choice of substrate, either of the two possible stereoisomers of a given enolate derivative is accessible with complete stereoselectivity. One‐pot isomerization‐aldol and isomerization‐allylation processes illustrate the synthetic utility of this method.  相似文献   

8.
A transition‐metal‐free formal decarboxylative coupling reaction between α‐oxocarboxylates and α‐bromoketones to synthesize 1,3‐diketone derivatives is presented. In this reaction, a broad scope of substrates can be employed, and neither a metal‐based reagent nor an additional base is required. DFT calculations reveal that this reaction proceeds through a coupling followed by decarboxylation mechanism and the α‐bromoketone unprecedentedly serves as a nucleophile under neutral conditions. The rate‐determining step is an unusual hydrogen‐bond‐assisted enolate formation by thermolysis.  相似文献   

9.
Herein, we report a unique structural property of 2,4,6‐tri‐tert‐butylanilide, which can be separated into its amide rotamers at room temperature. Interconversion between the rotamers of anilide enolates occurs readily at room temperature and their reaction with electrophiles gives mixtures of the rotamers in a ratio that depends on the reactivity of the corresponding electrophile. That is, the reaction of the 2,4,6‐tri‐tert‐butylacetanilide enolate with reactive electrophiles, such as allyl bromide or protic acids, gives mixtures of the anilide rotamers in which the E rotamer is the major component, whereas less‐reactive electrophiles, such as 1‐bromopropane and 2‐iodopropane, yield mixtures of the rotamers in which the Z rotamer is the major component. The rotameric ratio of the product is also strongly dependent on the reactivity of the anilide enolate. Switching between the anilide rotamers can be achieved through protonation of a less‐reactive enolate by a less‐reactive protic acid and thermal isomerization of the anilide.  相似文献   

10.
11.
The one‐pot synthesis of 4‐aryl‐1,4‐dihydro‐2‐thioxo‐2H‐3,1‐benzoxazine‐4‐acetic acid derivatives 2 was achieved in good yields by the reaction of aryl(2‐isothiocyanatophenyl)methanones 1 with lithium enolates of acetates and tertiary acetamides. (2E)‐1‐(2‐Isothiocyanatophenyl)‐3‐phenylprop‐2‐en‐1‐one ( 3 ) gave 1,4‐dihydro‐4‐[(1E)‐2‐phenylethenyl]‐2‐thioxo‐2H‐3,1‐benzoxazine‐4‐acetic acid derivatives 4 in good yields as well.  相似文献   

12.
13.
The asymmetric fluorination of azolium enolates that are generated from readily available simple aliphatic aldehydes or α‐chloro aldehydes and N‐heterocyclic carbenes (NHCs) is described. The process significantly expands the synthetic utility of NHC‐catalyzed fluorination and provides facile access to a wide range of α‐fluoro esters, amides, and thioesters with excellent enantioselectivity. Pyrazole was identified as an excellent acyl transfer reagent for catalytic amide formation.  相似文献   

14.
Described is the first study on oxidative enantioselective α‐fluorination of simple aliphatic aldehydes enabled by N‐heterocyclic carbene catalysis. N‐fluorobis(phenyl)sulfonimide serves as a an oxidant and as an “F” source. The C? F bond formation occurs directly at the α position of simple aliphatic aldehydes, thus overcoming nontrivial challenges, such as competitive difluorination and nonfluorination, and proceeds with high to excellent enantioselectivities.  相似文献   

15.
A convenient one‐pot method for the preparation of (4Z)‐4‐(arylmethylidene)‐5‐ethoxy‐1,3‐oxazolidine‐2‐thiones 2 and 3 from ethyl (2Z)‐3‐aryl‐2‐isothiocyanatoprop‐2‐enoates 1 , which can be easily prepared from ethyl 2‐azidoacetate and aromatic aldehydes, has been developed. Thus, these α‐isothiocyanato α,β‐unsaturated esters were treated with organolithium compounds, including lithium enolates of acetates, to provide 5‐substituted (4Z)‐4‐(arylmethylidene)‐5‐ethoxy‐1,3‐oxazolidine‐2‐thiones, 2 , and 2‐[(4Z)‐(4‐arylmethylidene)‐5‐ethoxy‐2‐thioxo‐1,3‐oxazolidin‐5‐yl]acetates, 3 .  相似文献   

16.
The development of the first trans‐selective catalytic asymmetric [2+2] cyclocondensation of acyl halides with aliphatic aldehydes furnishing 3,4‐disubstituted β‐lactones is described. This work made use of a new strategy within the context of asymmetric dual activation catalysis: it combines the concepts of Lewis acid and organic aprotic ion pair catalysis in a single catalyst system. The methodology could also be applied to aromatic aldehydes and offers broad applicability (29 examples). The utility was further demonstrated by nucleophilic ring‐opening reactions that provide highly enantiomerically enriched anti‐aldol products.  相似文献   

17.
Asymmetric construction of halogenated quaternary carbon centers under mild reaction conditions remains challenging. Reported here is an unprecedented and highly stereoselective Brønsted base catalyzed [4+2] cycloaddition between either α‐chloro‐ or α‐bromoaldehydes and cyclic enones. The key intermediate, an α‐halogenated enolate, is susceptible to dehalogenation and can be stabilized and stereochemically controlled using bifunctional tertiary amines. This method provides facile access to a collection of optically pure bicyclic dihydropyrans having three contiguous stereocenters, including a halogen‐bearing quaternary carbon center. Of note, the product can be transformed in situ into densely functionalized spirocyclopropanes in a highly efficient and stereoselective manner.  相似文献   

18.
Cooperative catalysis enables the direct enantioselective α‐allylation of linear prochiral esters with 2‐substituted allyl electrophiles. Critical to the successful development of the method was the recognition that metal‐centered reactivity and the source of enantiocontrol are independent. This feature is unique to simultaneous catalysis events and permits logical tuning of the supporting ligands without compromising enantioselectivity.  相似文献   

19.
The catalytic enantioselective synthesis of α‐fluorinated chiral tertiary alcohols from (hetero)aryl methyl ketones is described. The use of a bifunctional iminophosphorane (BIMP) superbase was found to facilitate direct aldol addition by providing the strong Brønsted basicity required for rapid aryl enolate formation. The new synthetic protocol is easy to perform and tolerates a broad range of functionalities and heterocycles with high enantioselectivity (up to >99:1 e.r.). Multi‐gram scalability has been demonstrated along with catalyst recovery and recycling. 1H NMR studies identified a 1400‐fold rate enhancement under BIMP catalysis, compared to the prior state‐of‐the‐art catalytic system. The utility of the aldol products has been highlighted with the synthesis of various enantioenriched building blocks and heterocycles, including 1,3‐aminoalcohol, 1,3‐diol, oxetane, and isoxazoline derivatives.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号