首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anti‐infectious strategies against pathogen infections can be achieved through antiadhesive strategies by using multivalent ligands of bacterial virulence factors. LecA and LecB are lectins of Pseudomonas aeruginosa implicated in biofilm formation. A series of 27 LecA‐targeting glycoclusters have been synthesized. Nine aromatic galactose aglycons were investigated with three different linker arms that connect the central mannopyranoside core. A low‐nanomolar (Kd=19 nm , microarray) ligand with a tyrosine‐based linker arm could be identified in a structure–activity relationship study. Molecular modeling of the glycoclusters bound to the lectin tetramer was also used to rationalize the binding properties observed.  相似文献   

2.
3.
Bacterial adhesion, biofilm formation and host cell invasion of the ESKAPE pathogen Pseudomonas aeruginosa require the tetravalent lectins LecA and LecB, which are therefore drug targets to fight these infections. Recently, we have reported highly potent divalent galactosides as specific LecA inhibitors. However, they suffered from very low solubility and an intrinsic chemical instability due to two acylhydrazone motifs, which precluded further biological evaluation. Here, we isosterically substituted the acylhydrazones and systematically varied linker identity and length between the two galactosides necessary for LecA binding. The optimized divalent LecA ligands showed improved stability and were up to 1000-fold more soluble. Importantly, these properties now enabled their biological characterization. The lead compound L2 potently inhibited LecA binding to lung epithelial cells, restored wound closure in a scratch assay and reduced the invasiveness of P. aeruginosa into host cells.  相似文献   

4.
Lectin LecA is a virulence factor of Pseudomonas aeruginosa involved in lung injury, mortality, and cellular invasion. Ligands competing with human glycoconjugates for LecA binding are thus promising candidates to counteract P. aeruginosa infections. We have identified a novel divalent ligand from a focused galactoside(Gal)‐conjugate array which binds to LecA with very high affinity (Kd=82 nM ). Crystal structures of LecA complexed with the ligand together with modeling studies confirmed its ability to chelate two binding sites of LecA. The ligand lowers cellular invasiveness of P. aeruginosa up to 90 % when applied in the range of 0.05–5 μM . Hence, this ligand might lead to the development of drugs against P. aeruginosa infection.  相似文献   

5.
Atomic force microscopy reveals that Pseudomonas aeruginosa LecA (PA-IL) and a tetra-galactosylated 1,3-alternate calix[4]arene-based glycocluster self-assemble according to an aggregative chelate binding mode to create monodimensional filaments. Lectin oligomers are identified along the filaments and defects in chelate binding generate branches and bifurcations. A molecular model with alternate 90° orientation of LecA tetramers is proposed to describe the organisation of lectins and glycoclusters in the filaments.  相似文献   

6.
Solid phase peptide synthesis (SPPS) provides peptides with a dendritic topology when diamino acids are introduced in the sequences. Peptide dendrimers with one to three amino acids between branches can be prepared with up to 38 amino acids (MW ~ 5,000 Da). Larger peptide dendrimers (MW ~ 30,000) were obtained by a multivalent chloroacetyl cysteine (ClAc) ligation. Structural studies of peptide dendrimers by CD, FT-IR, NMR and molecular dynamics reveal molten globule states containing up to 50% of α-helix. Esterase and aldolase peptide dendrimers displaying dendritic effects and enzyme kinetics (k(cat)/k(uncat) ~ 10(5)) were designed or discovered by screening large combinatorial libraries. Strong ligands for Pseudomonas aeruginosa lectins LecA and LecB able to inhibit biofilm formation were obtained with glycopeptide dendrimers. Efficient ligands for cobalamin, cytotoxic colchicine conjugates and antimicrobial peptide dendrimers were also developed showing the versatility of dendritic peptides. Complementing the multivalency, the amino acid composition of the dendrimers strongly influenced the catalytic or biological activity obtained demonstrating the importance of the "apple tree" configuration for protein-like function in peptide dendrimers.  相似文献   

7.
本文研究厌氧条件下产电绿脓杆菌P. aeruginosa BTE-1的电化学催化特征。研究结果表明,P. aeruginosa BTE-1菌株在厌氧条件下,不能分泌可充当电子介体的绿脓菌素,但可通过在电极表面形成生物膜呈现了直接电催化性能。P. aeruginosa BTE-1在电极表面形成生物膜与其在特定电极电位下向电极传递电子的过程直接相关,适宜的电位为+0.2 V (vs. SCE),电位过高可能会损害P. aeruginosa BTE-1细胞。室温范围内升高温度可增强P. aeruginosa BTE-1生物膜电催化活性,但过高的温度(>60℃)会抑制生物膜电催化活性。循环伏安曲线显示,在厌氧条件下形成的P. aeruginosa BTE-1生物膜,具有与典型产电菌株G. sulfurreducens相近的氧化还原电位(-0.4 V~ -0.2 V vs. SCE)。P. aeruginosa BTE-1生物膜可电催化酵母抽取物和葡萄糖,但不能电催化醋酸盐。  相似文献   

8.
Surface colonization is an essential step in biofilm development. The ability of oral pathogens to adhere to tooth surfaces is directly linked with the presence of specific molecules at the bacterial surface that can interact with enamel acquired pellicle ligands. In light of this, the aim of this study was to verify inhibitory and antibiofilm action of lectins from the Diocleinaesubtribe against Streptococcus mutans and Streptococcus oralis. The inhibitory action against planctonic cells was assessed using lectins from Canavaliaensi formis (ConA), Canavalia brasiliensis (ConBr), Canavalia maritima (ConM), Canavalia gladiata (CGL) and Canavalia boliviana (ConBol). ConBol, ConBr and ConM showed inhibitory activity on S. mutans growth. All lectins, except ConA, stimulated significantly the growth of S. oralis. To evaluate the effect on biofilm formation, clarified saliva was added to 96-well, flat-bottomed polystyrene plates, followed by the addition of solutions containing 100 or 200 μg/mL of the selected lectins. ConBol, ConM and ConA inhibited the S. mutans biofilms. No effects were found on S. oralis biofilms. Structure/function analysis were carried out using bioinformatics tools. The aperture and deepness of the CRD (Carbohydrate Recognition Domain) permit us to distinguish the two groups of Canavalia lectins in accordance to their actions against S. mutans and S. oralis. The results found provide a basis for encouraging the use of plant lectins as biotechnological tools in ecological control and prevention of caries disease.  相似文献   

9.
A potent divalent ligand of the Pseudomonas aeruginosa adhesion lectin LecA was elaborated into a tetravalent version. A polyethylene glycol (PEG) spacer was introduced to link two divalent galactosides. Each of the two divalent ligands contained a rigid spacer with a central phenyl group that is bridged by the PEG moiety. The resulting tetravalent ligand was found to bind LecA in the nanomolar range involving all of its sugar (sub)ligands. Analytical ultracentrifugation studies clearly showed that the tetravalent ligand was capable of aggregation the LecA tetramers in contrast to the divalent ligands. The aggregator behavior was found to be of importance in P. aeruginosa biofilm formation inhibition. Despite the weaker affinity it was a considerably better biofilm inhibitor with half inhibitory values around the 28 micromolar range.  相似文献   

10.
LecA is a galactose‐binding tetrameric lectin from Pseudomonas aeruginosa involved in infection and biofilm formation. The emergent antibiotic resistance of P. aeruginosa has made LecA a promising pharmaceutical target to treat such infections. To develop LecA inhibitors, we exploit the unique helical structure of polyproline peptides to create a scaffold that controls the galactoside positions to fit their binding sites on LecA. With a modular scaffold design, both the galactoside ligands and the inter‐ligand distance can be altered conveniently. We prepared scaffolds with spacings of 9, 18, 27, and 36 Å for ligand conjugation and found that glycopeptides with galactosides ligands three helical turns (27 Å) apart best fit LecA. In addition, we tested different galactose derivatives on the selected scaffold (27 Å) to improve the binding avidity to LecA. The results validate a new multivalent scaffold design and provide useful information for LecA inhibitor development.  相似文献   

11.
To demonstrate photodynamic antimicrobial chemotherapy (PACT) against planktonic and biofilm cultures of Pseudomonas aeruginosa, using photoporphyrin IX which could be endogenously synthesized by administrating delta-aminolaevulinic acid (delta-ALA), and a light emitted diode (LED) array to photoactivate the photosensitizer. P. aeruginosa suspended cells or biofilms, grown on a rotating disk reactor, were treated by different concentrations of delta-ALA in the dark for 1 h, followed by LED irradiation for various time. Regrowth experiments were conducted by placed PACT-treated disks back to a sterile reactor. Viable cells were determined by serial dilution and plate counts. Both P. aeruginosa planktonic and biofilm cells were inhibited by PACT with light doses or photosensitizer concentrations increasing. Treatments of planktonic cells with 10 mM delta-ALA and incident dose 240 J cm(-2) or 7.5 mM ALA and incident dose 360 J cm(-2) led to completely photoinactivation. No viable biofilm cells were found after treatment of 20 mM delta-ALA and incident dose 240 J cm(-2). However, regrowth was observed once PACT-treated biofilms were put back to a sterile reactor. Regrowth could be prevented only if biofilm samples were treated PACT twice. delta-ALA-mediated PACT on P. aeruginosa planktonic and biofilm cells was effective, though the detailed mechanism still required further investigation.  相似文献   

12.
Persistent infections caused by Staphylococcus aureus biofilms pose a major threat to global public health. 10-Hydroxy-2-decenoic acid (10-HDA), a main fatty acid in royal jelly, has been shown to possess various biological activities. The purpose of this study was to explore the effects of 10-HDA on the biofilms and virulence of S. aureus and its potential molecular mechanism. Quantitative crystal violet staining indicated that 10-HDA significantly reduced the biofilm biomass at sub-minimum inhibitory concentration (MIC) levels (1/32MIC to 1/2MIC). Scanning electron microscope (SEM) observations demonstrated that 10-HDA inhibited the secretion of extracellular polymeric substances, decreased bacterial adhesion and aggregation, and disrupted biofilm architecture. Moreover, 10-HDA could significantly decrease the biofilm viability and effectively eradicated the mature biofilms. It was also found that the hemolytic activity of S. aureus was significantly inhibited by 10-HDA. qRT-PCR analyses revealed that the expressions of global regulators sarA, agrA, and α-hemolysin gene hla were downregulated by 10-HDA. These results indicate that 10-HDA could be used as a potential natural antimicrobial agent to control the biofilm formation and virulence of S. aureus.  相似文献   

13.
14.
The pqs quorum sensing communication system of Pseudomonas aeruginosa controls virulence factor production and is involved in biofilm formation, therefore playing an important role for pathogenicity. In order to attenuate P. aeruginosa pathogenicity, we followed a ligand-based drug design approach and synthesized a series of compounds targeting PqsR, the receptor of the pqs system. In vitro evaluation using a reporter gene assay in Escherichia coli led to the discovery of the first competitive PqsR antagonists, which are highly potent (K(d,app) of compound 20: 7 nM). These antagonists are able to reduce the production of the virulence factor pyocyanin in P. aeruginosa. Our finding offers insights into the ligand-receptor interaction of PqsR and provides a promising starting point for further drug design.  相似文献   

15.
16.
The rheology of bacterial biofilms at the micron scale is an important step to understanding the communal lifecycles of bacteria that adhere to solid surfaces, as it measures how they mutually adhere and desorb. Improvements in particle-tracking software and imaging hardware have allowed us to successfully employ particle-tracking microrheology to measuring single-species bacterial biofilms, based on Staphlococcus aureus and Pseudomonas aeruginosa. By tracking displacements of the cells at a range of timescales, we separate active and thermal contributions to the cell motion. The S. aureus biofilms in particular show power-law rheology, in common with other dense colloidal suspensions. By calculating the mean compliance of S. aureus biofilms, we observe them becoming less compliant during growth, and more compliant during starvation. The biofilms are rheologically inhomogeneous on the micron scale, as a result of the strength of initial adhesion to the flow cell surface, the arrangement of individual bacteria, and larger-scale structures such as flocs of P. aeruginosa. Our S. aureus biofilms became homogeneous as a function of height as they matured: the rheological environment experienced by a bacterium became independent of how far it lived from the flow cell surface. Particle-tracking microrheology provides a quantitative measure of the "strength" of a biofilm. It may therefore prove useful in identifying drug targets and characterizing the effect of specific molecular changes on the micron-scale rheology of biofilms.  相似文献   

17.
The complex nature of bacterial cell membrane and structure of biofilm has challenged the efficacy of antimicrobial photodynamic therapy. This study was aimed to synthesize a polycationic chitosan-conjugated rose bengal (CSRB) photosensitizer and test its antibiofilm efficacy on Enterococcus faecalis (gram positive) and Pseudomonas aeruginosa (gram negative) using photodynamic therapy. During experiments, CSRB was tested along with an anionic photosensitizer rose bengal (RB) and a cationic photosensitizer methylene blue (MB) for uptake and killing efficacy on 7-day-old E. faecalis and P. aeruginosa biofilms. Microbiological culture based analysis was used to analyze the cell viability, while laser scanning confocal microscopy (LSCM) was used to examine the structure of biofilm. The synthesized CSRB showed absorbance spectrum similar to the RB. The concentration of CSRB uptaken by both the bacterial biofilms was significantly higher than that of RB and MB (P < 0.05). Photoactivation resulted in significantly higher elimination of both bacterial biofilms sensitized with CSRB than RB and MB. The structure of biofilm under LSCM was found to be disrupted following CSRB treatment. The present study highlighted the importance of inherent cell membrane permeabilizing effect of chitosan and increased cell/biofilm uptake of conjugated photosensitizer to produce significant antibiofilm efficacy during photodynamic therapy.  相似文献   

18.
The replacement of hydroxyl groups by fluorine atoms on hexopyranoside scaffolds may allow access to invaluable tools for studying various biochemical processes. As part of ongoing activities toward the preparation of fluorinated carbohydrates, a systematic investigation involving the synthesis and biological evaluation of a series of mono- and polyfluorinated galactopyranosides is described. Various monofluorogalactopyranosides, a trifluorinated, and a tetrafluorinated galactopyranoside have been prepared using a Chiron approach. Given the scarcity of these compounds in the literature, in addition to their synthesis, their biological profiles were evaluated. Firstly, the fluorinated compounds were investigated as antiproliferative agents using normal human and mouse cells in comparison with cancerous cells. Most of the fluorinated compounds showed no antiproliferative activity. Secondly, these carbohydrate probes were used as potential inhibitors of galactophilic lectins. The first transverse relaxation-optimized spectroscopy (TROSY) NMR experiments were performed on these interactions, examining chemical shift perturbations of the backbone resonances of LecA, a virulence factor from Pseudomonas aeruginosa. Moreover, taking advantage of the fluorine atom, the 19F NMR resonances of the monofluorogalactopyranosides were directly monitored in the presence and absence of LecA to assess ligand binding. Lastly, these results were corroborated with the binding potencies of the monofluorinated galactopyranoside derivatives by isothermal titration calorimetry experiments. Analogues with fluorine atoms at C-3 and C-4 showed weaker affinities with LecA as compared to those with the fluorine atom at C-2 or C-6. This research has focused on the chemical synthesis of “drug-like” low-molecular-weight inhibitors that circumvent drawbacks typically associated with natural oligosaccharides.  相似文献   

19.
The binding of metal ions to Pseudomonas aeruginosa PAO1 cells attached to a ZnSe surface has been observed in this research through cation exchange experiments using ATR-IR spectroscopy. A biofilm consisting of a single layer of Pseudomonas aeruginosa PAO1 cells was formed on a ZnSe prism by flowing a bacterial suspension in a 0.03 mol L(-)(1) NaNO(3) solution at pH 5.0 across its surface. Exposure of the biofilm to chromium(III) nitrate solution resulted in increases in all band absorbances. This absorbance increase has been attributed to the binding of chromium(III) to the bacterial exopolymers associated with the prism surface. The chromium(III) binding causes the exopolymers to contract and move the bacterial cell closer to the ZnSe surface. Further study of chromium(III) ion exchange using a mutant P. aeruginosa with a truncated lipopolysaccharide (LPS) chain resulted in much smaller absorbance changes. This observation supports the view that the extension of bacterial exopolymers and hence the distance of the bacterial cell from the surface is strongly influenced by environmental factors such as the presence of metal cations. Following chromium(III) cation exchange, the bacterial band absorbances remained constant even when the bacteria were washed with a 0.03 mol L(-)(1) NaNO(3) solution, indicating that the chromium(III) was irreversibly bound. Ion exchange with nickel(II) and cobalt(II) nitrate solutions within identical biofilms showed that these cations caused relatively small increases in absorbances that were reversible, indicating that nickel(II) and cobalt(II) are less strongly bound than chromium(III) within P. aeruginosa biofilms. The absence of discernible IR spectral changes with metal binding appears to indicate a predominantly electrostatic mechanism for binding of Cr(III), Ni(II), and Co(II) ions by bacteria in the early stages of biofilm formation.  相似文献   

20.
Molecular interactions in biofilms   总被引:1,自引:0,他引:1  
A biofilm may be defined as a microbially derived, sessile community characterized by cells that attach to an interface, embed in a matrix of exopolysaccharide, and demonstrate an altered phenotype. This review covers the current understanding of the nature of biofilms and the impact that molecular interactions may have on biofilm development and phenotype using the motile gram-negative rod Pseudomonas aeruginosa and the nonmotile gram-positive cocci Staphylococcus aureus as examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号