首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ubiquitylation is a complex posttranslational protein modification and deregulation of this pathway has been associated with different human disorders. Ubiquitylation comes in different flavors: Besides mono‐ubiquitylation, ubiquitin chains of various topologies are formed on substrate proteins. The fate of ubiquitylated proteins is determined by the linkage‐type of the attached ubiquitin chains, however, the underlying mechanism is poorly characterized. Herein, we describe a new method based on codon expansion and click‐chemistry‐based polymerization to generate linkage‐defined ubiquitin chains that are resistant to ubiquitin‐specific proteases and adopt native‐like functions. The potential of these artificial chains for analyzing ubiquitin signaling is demonstrated by linkage‐specific effects on cell‐cycle progression.  相似文献   

2.
Current methods to prepare adenosine diphosphate ribosylated (ADPr) peptides are not generally applicable due to the labile nature of this post‐translational modification and its incompatibility with strong acidic conditions used in standard solid‐phase peptide synthesis. A general strategy is presented to prepare ADPr peptide analogues based on a copper‐catalyzed click reaction between an azide‐modified peptide and an alkyne‐modified ADPr counterpart. The scope of this approach was expanded to proteins by preparing two ubiquitin ADPr analogues carrying the biological relevant α‐glycosidic linkage. Biochemical validation using Legionella effector enzyme SdeA shows that clicked ubiquitin ADPr is well‐tolerated and highlights the potential of this strategy to prepare ADPr proteins.  相似文献   

3.
4.
Legionnaires’ disease is caused by infection with the intracellularly replicating Gram-negative bacterium Legionella pneumophila. This pathogen uses an unconventional way of ubiquitinating host proteins by generating a phosphoribosyl linkage between substrate proteins and ubiquitin by making use of an ADPribosylated ubiquitin (UbADPr) intermediate. The family of SidE effector enzymes that catalyze this reaction is counteracted by Legionella hydrolases, which are called Dups. This unusual ubiquitination process is important for Legionella proliferation and understanding these processes on a molecular level might prove invaluable in finding new treatments. Herein, a modular approach is used for the synthesis of triazole-linked UbADPr, and analogues thereof, and their affinity towards the hydrolase DupA is determined and hydrolysis rates are compared to natively linked UbADPr. The inhibitory effects of modified Ub on the canonical eukaryotic E1-enzyme Uba1 are investigated and rationalized in the context of a high-resolution crystal structure reported herein. Finally, it is shown that synthetic UbADPr analogues can be used to effectively pull-down overexpressed DupA from cell lysate.  相似文献   

5.
报道了两种生物质谱技术ESI-MS和MALDI-MS在鉴定乙酰化修饰蛋白BSA-ac中的应用研究结果. 乙酰化修饰蛋白通过特征碎裂峰m/z 126.1或MS/MS质谱图中相差一个赖氨酸的相邻b或y离子之间170 Da分子量的差异确证赖氨酸乙酰化修饰, 并且后者提供具体修饰位点信息. 研究提示ESI-MS和MALDI-MS两种质谱技术均可用于鉴定实际复杂样品中的乙酰化蛋白, 且在乙酰化蛋白的鉴定中各有其优点.  相似文献   

6.
7.
Wrestling with SUMO: The chemical conjugation of proteins with small ubiquitin-like modifiers (SUMO) can be achieved by a copper(I)-catalyzed cycloaddition and unnatural amino acid mutagenesis. This approach overcomes previous restrictions related to the primary sequence of proteins and coupling conditions. Moreover, biochemical data suggests that this triazole linkage presents the modifier in a proper distance and orientation relative to the target protein.  相似文献   

8.
9.
The post-translational modification of proteins regulates many biological processes. Their dysfunction relates to diseases. Ubiquitination is one of the post-translational modifications that target lysine residue and regulate many cellular processes. Three enzymes are required for achieving the ubiquitination reaction: ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3). E3s play a pivotal role in selecting substrates. Many structural studies have been conducted to reveal the molecular mechanism of the ubiquitination reaction. Recently, the structure of PCAF_N, a newly categorized E3 ligase, was reported. We present a review of the recent progress toward the structural understanding of E3 ligases.  相似文献   

10.
Glycolipids are important structural components of biological membranes and perform crucial functions in living systems, including signaling transduction and interaction with extracellular environment. However, the mechanistic exploration of glycolipids in vivo is challenging because they are not genetically encoded. Herein, we designed and synthesized a series of bifunctional monogalactosyldiacylglycerol (MGDG) probes as a model by introducing diazirine and terminal alkyne moieties on an aliphatic chain. In combination with proteome profiling and molecular modeling, we have demonstrated that MGDG alleviates inflammation by antagonizing TLR4.  相似文献   

11.
12.
Dual‐labeled biomolecules constitute a new generation of bioconjugates with promising applications in therapy and diagnosis. Unfortunately, the development of these new families of biologics is hampered by the technical difficulties associated with their construction. In particular, the site specificity of the conjugation is critical as the number and position of payloads can have a dramatic impact on the pharmacokinetics of the bioconjugate. Herein, we introduce dichlorotetrazine as a trivalent platform for the selective double modification of proteins on cysteine residues. This strategy is applied to the dual labeling of albumin with a macrocyclic chelator for nuclear imaging and a fluorescent probe for fluorescence imaging.  相似文献   

13.
A poly(amide)‐based dendrimer was synthesized and functionalized with the membrane‐interacting peptide gH(625–644) (gH625) derived from the herpes simplex virus type 1 (HSV‐1) envelope glycoprotein H, which has previously been shown to assist in delivering large cargoes across the cellular membrane. We demonstrate that the attachment of the gH625 peptide sequence to the termini of a dendrimer allows the conjugate to penetrate into the cellular matrix, whereas the unfunctionalized dendrimer is excluded from translocation. The peptide‐functionalized dendrimer is rapidly taken into the cells mainly through a non‐active translocation mechanism. Our results suggest that the presented peptidodendrimeric scaffold may be a promising material for efficient drug delivery.  相似文献   

14.
15.
16.
This contribution describes the ring opening metathesis polymerization of a sulfonyl fluoride decorated polynorbornene and its postsynthetic modification using the sulfur-fluoride exchange “click” reaction.  相似文献   

17.
Acylation of proteins with fatty acids is important for the regulation of membrane association, trafficking, subcellular localization, and activity of many cellular proteins. While significant progress has been made in our understanding of the two major forms of protein acylation with fatty acids, N‐myristoylation and S‐palmitoylation, studies of the acylation of lysine residues, within proteins, with fatty acids have lagged behind. Demonstrated here is the use of integrative chemical biology approaches to examine human sirtuins as de‐fatty‐acid acylases in vitro and in cells. Photo‐crosslinking chemistry is used to investigate enzymes which recognize fatty‐acid acylated lysine. Human Sirt2 was identified as a robust lysine de‐fatty‐acid acylase in vitro. The results also show that Sirt2 can regulate the acylation of lysine residues, of proteins, with fatty acids within cells.  相似文献   

18.
熊兴泉  唐忠科  蔡雷 《化学进展》2012,(9):1751-1764
可逆加成-裂解链转移聚合(RAFT)由于单体适用面广、聚合条件温和、不受聚合方法的限制等特性, 已经成为活性合成聚合物的有效手段之一。点击化学(click chemistry)由于具有良好的选择性、模块性以及官能团耐受性等特点迅速成为许多研究领域,如药物、聚合物、功能材料等合成的有力工具,同时涌现出了多种基于巯基的点击反应。本文综述了近年来基于巯基的点击反应, 如巯基-烯、巯基-炔、巯基-异氰酸酯、巯基-环氧化物以及巯基-卤代烃等新型点击反应与RAFT聚合相结合在功能性聚合物的制备和修饰中的应用, 相信这两种手段的结合将在其中发挥积极的作用。  相似文献   

19.
A fascinating nanoobject, hydrophobic polymer brushes with a hard core of silica nanoparticles and a relatively soft shell of polystyrene-block-poly(? -caprolactone) (PS-b-PCL), was easily constructed by surface-initiated atom transfer radical polymerization (ATRP) of styrene, ring-opening polymerization (ROP) of ?-caprolactone and click reaction. The structure and morphology of the as-prepared hybrid nanomaterials were characterized and confirmed by FTIR, 1H-NMR, TGA and TEM. We believe that the breakthrough associated with formation of such a complex nanoobject would open a door for the fabrication of novel functional nanomaterials or nanodevices with designable structure and tailor-made properties.  相似文献   

20.
The identification of specific substrates of glutathione S‐transferases (GSTs) is important for understanding drug metabolism. A method termed bioorthogonal identification of GST substrates (BIGS) was developed, in which a reduced glutathione (GSH) analogue was developed for recognition by a rationally engineered GST to label the substrates of the corresponding native GST. A K44G‐W40A‐R41A mutant (GST‐KWR) of the mu‐class glutathione S‐transferases GSTM1 was shown to be active with a clickable GSH analogue (GSH‐R1) as the cosubstrate. The GSH‐R1 conjugation products can react with an azido‐based biotin probe for ready enrichment and MS identification. Proof‐of‐principle studies were carried to detect the products of GSH‐R1 conjugation to 1‐chloro‐2,4‐dinitrobenzene (CDNB) and dopamine quinone. The BIGS technology was then used to identify GSTM1 substrates in the Chinese herbal medicine Ganmaocongji.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号