首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shao  Dingsheng  Wang  Xianyou  Li  Xiaolong  Luo  Kaili  Yang  Li  Liu  Lei  Liu  Hong 《Journal of Solid State Electrochemistry》2019,23(10):2785-2792
Journal of Solid State Electrochemistry - The performance of solid-state lithium ion battery mainly depends on the performance of the electrolyte and the interface between the electrolyte and the...  相似文献   

2.
Solid electrolytes play a vital role in solid-state Li secondary batteries,which are promising high-energy storage devices for new-generation electric vehicles.Nevertheless,obtaining a suitable solid electrolyte by a simple and residue-free preparation process,resulting in a stable interface between electrolyte and electrode,is still a great challenge for practical applications.Herein,we report a self-crosslinked polymer electrolyte(SCPE)for high-performance lithium batteries,prepared by a one-step method based on 3-methoxysilyl-terminated polypropylene glycol(SPPG,a liquid oligomer).It is worth noting that lithium bis(oxalate)borate(Li BOB)can react with SPPG to form a crosslinked structure via a curing reaction.This self-formed polymer electrolyte exhibits excellent properties,including high roomtemperature ionic conductivity(2.6×10-4 S cm-1),wide electrochemical window(4.7 V),and high Li ion transference number(0.65).The excellent cycling stability(500 cycles,83%)further highlights the improved interfacial stability after the in situ formation of SCPE on the electrode surface.Moreover,this self-formation strategy enhances the safety of the battery under mechanical deformation.Therefore,the present self-crosslinked polymer electrolyte shows great potential for applications in high-performance lithium batteries.  相似文献   

3.
Review on gel polymer electrolytes for lithium batteries   总被引:1,自引:0,他引:1  
This paper reviews the state-of-art of polymer electrolytes in view of their electrochemical and physical properties for the applications in lithium batteries. This review mainly encompasses on five polymer hosts namely poly(ethylene oxide) (PEO), poly(acrylonitrile) (PAN), poly(methyl methacrylate) (PMMA), poly(vinylidene fluoride) (PVdF) and poly(vinylidene fluoride-hexafluoro propylene) (PVdF-HFP) as electrolytes. Also the ionic conductivity, morphology, porosity and cycling behavior of PVdF-HFP membranes prepared by phase inversion technique with different non-solvents have been presented. The cycling behavior of LiMn2O4/polymer electrolyte (PE)/Li cells is also described.  相似文献   

4.
Li metal batteries are revived as the next-generation batteries beyond Li-ion batteries. The Li metal anode can be paired with intercalation-type cathodes LiMO2 and conversion-type cathodes such as sulfur and oxygen. Then, energy densities of Li/LiMO2 and Li/S,O2 batteries can reach 400 Whkg?1 and more than 500 Whkg?1, respectively, which surpass that of the state-of-the-art LIB (280 Whkg?1). However, replacing the intercalation-type graphite anode with the Li metal anode suffers from low coulombic efficiency during repeated Li plating/stripping processes, which leads to short cycle lifetime and potential safety problems. The key solution is to construct a stable and uniform solid electrolyte interphase with high Li+ transport and high elastic strength on the Li metal anode. This review summarizes recent progress in improving the solid electrolyte interphase by tailoring liquid electrolytes, a classical but the most convenient and cost-effective strategy.  相似文献   

5.
Poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) copolymer membranes were prepared by a phase inversion technique with poly(ethylene glycol) as an additive and tetrahydrofuran or acetone or dimethylformamide as solvent. The morphology, ionic conductivity and uptake of electrolyte solution by the polymer membranes were studied. The amount of intake of electrolyte solution by the polymer membranes increases with the increase of PEG content. The morphology and ionic conductivity of the polymer membranes (PM) are correlated with the physical properties of the solvents used in the phase inversion process. The cycling behavior of the membrane was examined with Li/LiCoO2 cells.  相似文献   

6.
Solid-state electrolytes (SSEs) are capable of inhibiting the growth of lithium dendrites, demonstrating great potential in next-generation lithium-ion batteries (LIBs). However, poor room temperature ionic conductivity and the unstable interface between SSEs and the electrode block their large-scale applications in LIBs. Composite solid-state electrolytes (CSSEs) formed by mixing different ionic conductors lead to better performance than single SSEs, especially in terms of ionic conductivity and interfacial stability. Herein, we have systematically reviewed recent developments and investigations of CSSEs including inorganic composite and organic–inorganic composite materials, in order to provide a better understanding of designing CSSEs. The comparison of different types of CSSEs relative to their parental materials is deeply discussed in the context of ionic conductivity and interfacial design. Then, the proposed ion transfer pathways and models of lithium dendrite growth in composites are outlined to inspire future development of CSSEs.

Composite solid-state electrolytes (CSSEs) formed by mixing different ionic conductors lead to better performance than a single solid-state electrolytes (SSEs), demonstrating great potentials in the next-generation lithium-ion batteries (LIBs).  相似文献   

7.
Owing to their improved mechanical properties and good polymer miscibility, the blend gel polymer electrolytes of poly (vinylidene fluoride) (PVdF)-poly(ethyl methacrylate) (PEMA) have been prepared using solvent casting technique and characterized for their electrochemical performances. The electrolyte shows a maximum ionic conductivity of 1.5 × 10−4 S cm−1 at 301 K for the 90:10 blend ratio of PVdF:PEMA system with good transport property. The ionic conductivity is enhanced, in accompany with improved microstructural homogeneity, at low PEMA contents, while the decreased conductivity at high contents has been attributed to increasing crystalline PEMA domains. With the optimum PVdF:PEMA ratio, the complex system was found to facile reasonable ionic transference number and exhibit superior interfacial stability with Li electrode.  相似文献   

8.
The absence of control over carriers transport during electrochemical cycling, accompanied by the deterioration of the solid electrolyte interphase(SEI) and the growth of lithium dendrites, has hindered the development of lithium metal batteries. Herein, a separator complexion consisting of polyacrylonitrile(PAN) nanofiber and MIL-101(Cr) particles prepared by electrospinning is proposed to bind the anions from the electrolyte utilizing abundant effective open metal sites in the MIL-101(Cr) part...  相似文献   

9.
The properties of electrolyte systems based on standard nonaqueous solvent composed of a mixture of dialkyl and alkylene carbonates and new commercially available lithium salts potentially capable of being an alternative to thermally unstable and chemically active lithium hexafluorophosphate LiPF6 in the mass production of lithium-ion rechargeable batteries are surveyed. The advantages and drawbacks of electrolytes containing lithium salts alternative to LiPF6 are discussed. The real prospects of substitution for LiPF6 in electrolyte solutions aimed at improving the functional characteristics of lithium-ion batteries are assessed. Special attention is drawn to the efficient use of new lithium salts in the cells with electrodes based on materials predominantly used in the current mass production of lithium-ion batteries: grafitic carbon (negative electrode), LiCoO2, LiMn2O4, LiFePO4, and also solid solutions isostructural to lithium cobaltate with the general composition LiMO2 (M = Co, Mn, Ni, Al) (positive electrode).  相似文献   

10.
《中国化学快报》2021,32(9):2659-2678
In comparison with lithium-ion batteries (LIBs) with liquid electrolytes, all-solid-state lithium batteries (ASSLBs) have been considered as promising systems for future energy storage due to their safety and high energy density. As the pivotal component used in ASSLBs, composite solid polymer electrolytes (CSPEs), derived from the incorporation of inorganic fillers into solid polymer electrolytes (SPEs), exhibit higher ionic conductivity, better mechanical strength, and superior thermal/electrochemical stability compared to the single-component SPEs, which can significantly promote the electrochemical performance of ASSLBs. Herein, the recent advances of CSPEs applied in ASSLBs are presented. The effects of the category, morphology and concentration of inorganic fillers on the ionic conductivity, mechanical strength, electrochemical window, interfacial stability and possible Li+ transfer mechanism of CSPEs will be systematically discussed. Finally, the challenges and perspectives are proposed for the future development of high-performance CSPEs and ASSLBs.  相似文献   

11.
As the energy density of state-of-the-art lithium (Li)-ion batteries (LIBs) increases, the safety concern of LIBs using liquid electrolytes is drawing increasing attention. Flammability of electrolytes is a critical link of the overall safety performance of LIBs and Li metal batteries. For this reason, intensive efforts have been devoted to suppressing the flammability of liquid electrolytes. In this short review, the common approaches to reduce the flammability of the nonaqueous liquid electrolytes will be summarized. The advantages and limitations of these approaches will also be discussed.  相似文献   

12.
The composite polymer electrolyte (CPE) membranes, comprising of poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP), aluminum oxyhydroxide, (AlO[OH]n) of two different particle sizes 7 μm/14 nm and LiN(CF3SO2)2 as lithium salt were prepared using solution casting technique. The prepared membranes were subjected to XRD, impedance spectroscopy, compatibility and transport number studies. The incorporation of nanofiller greatly enhanced the ionic conductivity and the compatibility of the composite polymer electrolyte. Also LiCr0.01Mn1.99O4/CPE/Li cells were assembled and their charge-discharge profiles have been made at 70 °C. The film which possesses nanosized filler offered better electrochemical properties than those with micron sized filler. The results are discussed based on Lewis acid-base theory.  相似文献   

13.
Novel composite, gel-type polymer electrolytes have been prepared by dispersing selected ceramic powders into a matrix formed by a lithium salt solution contained in a poly(acrylonitrile) (PAN) network. The electrochemical characterization demonstrates that these new types of composite gel electrolytes have high ionic conductivity, wide electrochemical stability and, particularly, high chemical integrity (no liquid leakage) even at temperatures above ambient. These unique properties make the composite gel membranes particularly suitable as electrolyte separators in lithium ion polymer batteries.  相似文献   

14.
《中国化学快报》2022,33(8):4037-4042
At present, replacing the liquid electrolyte in a lithium metal battery with a solid electrolyte is considered to be one of the most powerful strategies to avoid potential safety hazards. Composite solid electrolytes (CPEs) have excellent ionic conductivity and flexibility owing to the combination of functional inorganic materials and polymer solid electrolytes (SPEs). Nevertheless, the ionic conductivity of CPEs is still lower than those of commercial liquid electrolytes, so the development of high-performance CPEs has important practical significance. Herein, a novel fast lithium-ion conductor material LiTa2PO8 was first filled into poly(ethylene oxide) (PEO)-based SPE, and the optimal ionic conductivity was achieved by filling different concentrations (the ionic conductivity is 4.61 × 10?4 S/cm with a filling content of 15 wt% at 60 °C). The enhancement in ionic conductivity is due to the improvement of PEO chain movement and the promotion of LiTFSI dissociation by LiTa2PO8. In addition, LiTa2PO8 also takes the key in enhancing the mechanical strength and thermal stability of CPEs. The assembled LiFePO4 solid-state lithium metal battery displays better rate performance (the specific capacities are as high as 157.3, 152, 142.6, 105 and 53.1 mAh/g under 0.1, 0.2, 0.5, 1 and 2 C at 60 °C, respectively) and higher cycle performance (the capacity retention rate is 86.5% after 200 cycles at 0.5 C and 60 °C). This research demonstrates the feasibility of LiTa2PO8 as a filler to improve the performance of CPEs, which may provide a fresh platform for developing more advanced solid-state electrolytes.  相似文献   

15.
Ion‐conducting block copolymers (BCPs) have attracted significant interest as conducting materials in solid‐state lithium batteries. BCP self‐assembly offers promise for designing ordered materials with nanoscale domains. Such nanostructures provide a facile method for introducing sufficient mechanical stability into polymer electrolyte membranes, while maintaining the ionic conductivity at levels similar to corresponding solvent‐free homopolymer electrolytes. This ability to simultaneously control conductivity and mechanical integrity provides opportunities for the fabrication of sturdy, yet easily processable, solid‐state lithium batteries. In this review, we first introduce several fundamental studies of ion conduction in homopolymers for the understanding of ion transport in the conducting domain of BCP systems. Then, we summarize recent experimental studies of BCP electrolytes with respect to the effects of salt‐doping and morphology on ionic conductivity. Finally, we present some remaining challenges for BCP electrolytes and highlight several important areas for future research. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1–16  相似文献   

16.
Wu  Hao  Han  Haoqin  Yan  Zhenhua  Zhao  Qing  Chen  Jun 《Journal of Solid State Electrochemistry》2022,26(9):1791-1808
Journal of Solid State Electrochemistry - Chloride solid-state electrolytes (SSEs) with wide electrochemical windows, high room-temperature ionic conductivity, and good stability towards air have...  相似文献   

17.
《印度化学会志》2023,100(4):100959
The polymer-ceramic composite electrolytes have great application potential for next-generation solid state lithium batteries, as they have the merits to eliminate the problem of liquid organic electrolytes and enhancing chemical/electrochemical stability. However, polymer-ceramic composite electrolytes show poor ionic conductivity, which greatly hinders their practical applications. In this work, the addition of plasticizer ethylene carbonate (EC) into polymer-ceramic composite electrolyte for lithium batteries effectively promotes the ionic conductivity. A high ionic conductivity can be attained by adding 40 wt% EC to the polyethylene oxide (PEO)/polyvinylidene fluoride (PVDF)-Li7La3Zr2O12 (LLZO) based polymer-ceramic composite electrolytes, which is 2.64 × 10−4 S cm−1 (tested at room temperature). Furthermore, the cell assembled with lithium metal anode, this composite electrolyte, and LiFePO4 cathode can work more than 80 cycles at room temperature (tested at 0.2 C). The battery delivers a high reversible specific capacity after 89 cycles, which is 119 mAh g−1.  相似文献   

18.
The development of flame retardant or nonflammable electrolytes is the key to improve the safety of lithium batteries, owing to inflammable organic solvents and polymer matrix in common liquid and polymer electrolytes regarded as the main cause of battery fire. Herein, a series of solid-state polyphosphate oligomers(SPPO) as a three-in-one electrolyte that integrated the roles of lithium salt, dissociation matrix, and flame retardant were synthesized. The well-designed SPPO electrolytes showed a...  相似文献   

19.
The host structure of polymers significantly influences ion transport and interfacial stability of electrolytes, dictating battery cycle life and safety for solid-state lithium metal batteries. Despite promising properties of ethylene oxide-based electrolytes, their typical clamp-like coordination geometry leads to crowd solvation sheath and overly strong interactions between Li+and electrolytes, rendering difficult dissociation of Li+and unfavorable solid electrolyte inter...  相似文献   

20.
We demonstrated room temperature cross-linkable gel polymer electrolytes (GPE) prepared by in situ cationic polymerization of tri(ethylene glycol) divinyl ether (TEGDVE) with LIBF4 that yields protonic acid and Lewis acid as an acidic initiating system by the reaction with water as an impurity in the liquid electrolyte. FTIR analysis reveals that TEGDVE in the liquid electrolyte is successfully polymerized into gel polymer electrolyte. The resulting gel polymer electrolyte showed promising electrochemical properties including ionic conductivity, wide range in working potential and stable cycle performance as a lithium ion conducting medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号