首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoactivatable fluorophores are essential tools for studying the dynamic molecular interactions within important biological systems with high spatiotemporal resolution. However, currently developed photoactivatable fluorophores based on conventional dyes have several limitations including reduced photoactivation efficiency, cytotoxicity, large molecular size, and complicated organic synthesis. To overcome these challenges, we herein report a class of photoactivatable fluorescent N‐hydroxyoxindoles formed through the intramolecular photocyclization of substituted o‐nitrophenyl ethanol (ONPE). These oxindole fluorophores afford excellent photoactivation efficiency with ultra‐high fluorescence enhancement (up to 800‐fold) and are small in size. Furthermore, the oxindole derivatives show exceptional biocompatibility by generating water as the only photolytic side product. Moreover, structure–activity relationship analysis clearly revealed the strong correlation between the fluorescent properties and the substituent groups, which can serve as a guideline for the further development of ONPE‐based fluorescent probes with desired photophysical and biological properties. As a proof‐of‐concept, we demonstrated the capability of a new substituted ONPE that has an uncaging wavelength of 365–405 nm and an excitation/emission at 515 and 620 nm, for the selective imaging of a cancer cell line (Hela cells) and a human neural stem cell line (hNSCs).  相似文献   

2.
Caged rhodamine dyes (Rhodamines NN) of five basic colors were synthesized and used as “hidden” markers in subdiffractional and conventional light microscopy. These masked fluorophores with a 2‐diazo‐1‐indanone group can be irreversibly photoactivated, either by irradiation with UV‐ or violet light (one‐photon process), or by exposure to intense red light (λ~750 nm; two‐photon mode). All dyes possess a very small 2‐diazoketone caging group incorporated into the 2‐diazo‐1‐indanone residue with a quaternary carbon atom (C‐3) and a spiro‐9H‐xanthene fragment. Initially they are non‐colored (pale yellow), non‐fluorescent, and absorb at λ=330–350 nm (molar extinction coefficient (ε)≈104 M?1 cm?1) with a band edge that extends to about λ=440 nm. The absorption and emission bands of the uncaged derivatives are tunable over a wide range (λ=511–633 and 525–653 nm, respectively). The unmasked dyes are highly colored and fluorescent (ε= 3–8×104 M?1 cm?1 and fluorescence quantum yields (?)=40–85 % in the unbound state and in methanol). By stepwise and orthogonal protection of carboxylic and sulfonic acid groups a highly water‐soluble caged red‐emitting dye with two sulfonic acid residues was prepared. Rhodamines NN were decorated with amino‐reactive N‐hydroxysuccinimidyl ester groups, applied in aqueous buffers, easily conjugated with proteins, and readily photoactivated (uncaged) with λ=375–420 nm light or intense red light (λ=775 nm). Protein conjugates with optimal degrees of labeling (3–6) were prepared and uncaged with λ=405 nm light in aqueous buffer solutions (?=20–38 %). The photochemical cleavage of the masking group generates only molecular nitrogen. Some 10–40 % of the non‐fluorescent (dark) byproducts are also formed. However, they have low absorbance and do not quench the fluorescence of the uncaged dyes. Photoactivation of the individual molecules of Rhodamines NN (e.g., due to reversible or irreversible transition to a “dark” non‐emitting state or photobleaching) provides multicolor images with subdiffractional optical resolution. The applicability of these novel caged fluorophores in super‐resolution optical microscopy is exemplified.  相似文献   

3.
Benzene is the simplest aromatic hydrocarbon with a six‐membered ring. It is one of the most basic structural units for the construction of π conjugated systems, which are widely used as fluorescent dyes and other luminescent materials for imaging applications and displays because of their enhanced spectroscopic signal. Presented herein is 2,5‐bis(methylsulfonyl)‐1,4‐diaminobenzene as a novel architecture for green fluorophores, established based on an effective push–pull system supported by intramolecular hydrogen bonding. This compound demonstrates high fluorescence emission and photostability and is solid‐state emissive, water‐soluble, and solvent‐ and pH‐independent with quantum yields of Φ=0.67 and Stokes shift of 140 nm (in water). This architecture is a significant departure from conventional extended π‐conjugated systems based on a flat and rigid molecular design and provides a minimum requirement for green fluorophores comprising a single benzene ring.  相似文献   

4.
Benzene is the simplest aromatic hydrocarbon with a six‐membered ring. It is one of the most basic structural units for the construction of π conjugated systems, which are widely used as fluorescent dyes and other luminescent materials for imaging applications and displays because of their enhanced spectroscopic signal. Presented herein is 2,5‐bis(methylsulfonyl)‐1,4‐diaminobenzene as a novel architecture for green fluorophores, established based on an effective push–pull system supported by intramolecular hydrogen bonding. This compound demonstrates high fluorescence emission and photostability and is solid‐state emissive, water‐soluble, and solvent‐ and pH‐independent with quantum yields of Φ=0.67 and Stokes shift of 140 nm (in water). This architecture is a significant departure from conventional extended π‐conjugated systems based on a flat and rigid molecular design and provides a minimum requirement for green fluorophores comprising a single benzene ring.  相似文献   

5.
The fluorescence properties of AIE‐active N‐amidinated fluoroquinolones, efficiently obtained by a perfluoroaryl azide–aldehyde–amine reaction, have been studied. The fluorophores were discovered to elicit a highly sensitive fluorescence quenching response towards guest molecules with hydrogen‐bond‐donating ability. This effect was evaluated in a range of protic/aprotic solvents with different H‐bonding capabilities, and also in aqueous media. The influence of acid/base was furthermore addressed. The hydrogen‐bonding interactions were studied by IR, NMR, UV/Vis and time‐resolved fluorescence decay, revealing their roles in quenching of the fluorescence emission. Due to the pronounced quenching property of water, the N‐amidinated fluoroquinolones could be utilized as fluorescent probes for quantifying trace amount of water in organic solvents.  相似文献   

6.
Stimulated emission depletion (STED) microscopy enables ultrastructural imaging of biological samples with high spatiotemporal resolution. STED nanoprobes based on fluorescent organosilica nanohybrids featuring sub‐2 nm size and near‐unity quantum yield are presented. The spin–orbit coupling (SOC) of heavy‐atom‐rich organic fluorophores is mitigated through a silane‐molecule‐mediated condensation/dehalogenation process, resulting in bright fluorescent organosilica nanohybrids with multiple emitters in one hybrid nanodot. When harnessed as STED nanoprobes, these fluorescent nanohybrids show intense photoluminescence, high biocompatibility, and long‐term photostability. Taking advantage of the low‐power excitation (0.5 μW), prolonged singlet‐state lifetime, and negligible depletion‐induced re‐excitation, these STED nanohybrids present high depletion efficiency (>96 %), extremely low saturation intensity (0.54 mW, ca. 0.188 MW cm?2), and ultra‐high lateral resolution (ca. λem/28).  相似文献   

7.
A facile access to optically active cyclic ureas was developed through palladium‐catalyzed asymmetric hydrogenation of pyrimidines containing tautomeric hydroxy group with up to 99 % ee. Mechanistic studies indicated that reaction pathway proceed through hydrogenation of C=N of the oxo tautomer pyrimidin‐2(1H)‐one, acid‐catalyzed isomerization of enamine–imine, and hydrogenation of imine pathway. In addition, the chiral cyclic ureas are readily converted into useful chiral 1,3‐diamine and thiourea derivatives without loss of optical purity.  相似文献   

8.
In the tridentate ligand 2,6‐bis(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)pyridine, C23H19N7, both sets of triazole N atoms are anti with respect to the pyridine N atom, while in the copper complex aqua[2,6‐bis(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)pyridine](pyridine)(tetrafluoroborato)copper(II) tetrafluoroborate, [Cu(BF4)(C5H5N)(C23H19N7)(H2O)]BF4, the triazole N atoms are in the synsyn conformation. The coordination of the CuII atom is distorted octahedral. The ligand structure is stabilized through intermolecular C—H...N interactions, while the crystal structure of the Cu complex is stabilized through water‐ and BF4‐mediated hydrogen bonds. Photoluminiscence studies of the ligand and complex show that the ligand is fluorescent due to triazole–pyridine conjugation, but that the fluorescence is quenched on complexation.  相似文献   

9.
《化学:亚洲杂志》2017,12(2):248-253
In this work, a unique approach is developed to generate photoswitchable and water‐soluble fluorescent nano‐aggregates. Initially, a new light‐controlled diarylethene–dansyl dyad DAE 1 is formed by linking two dansyl fluorophores covalently to a symmetrical dithienylethene backbone, whose photophysical properties can be reversibly switched by optical stimuli. Subsequently, the water insolubility of the molecular switch 1 is overcome by incorporating it into the bilayer of liposome DPPC (1,2‐dihexadecanoyl‐sn ‐glycero‐3‐phosphocholine) in water. This strategy creates stable fluorescent nano‐aggregates OF‐1@DPPC (≈25 nm diameter) that are soluble in an aqueous medium. The nano‐aggregates OF‐1@DPPC retain and even improve the photoswitchable fluorescence properties of DAE 1 . More importantly, OF‐1@DPPC exhibits a remarkable photostability and fatigue resistance after 5 cycles of irradiation with UV and visible light, which is crucial for its practical application.  相似文献   

10.
Members of a series of boron difluoride complexes with 3‐(heteroaryl)‐2‐iminocoumarin ligands bearing both a phenolic hydroxyl group (acting as a fluorogenic center) and an N‐aryl substituent (acting as a stabilizing moiety) have been synthesized in good yields by applying a straightforward two‐step method. These novel fluorogenic dyes belong to the family of “Boricos” (D. Frath et al., Chem. Commun.­ 2013 , 49, 4908–4910) and are the first examples of phenol‐based fluorophores of which the photophysical properties in the green‐yellow spectral range are dramatically improved by N,N‐chelation of a boron atom. Modulation of their fluorescence properties through reversible chemical modification of their phenol moieties has been demonstrated by the preparation of the corresponding 2,4‐dinitrophenyl (DNP) ethers, which led to a dramatic “OFF‐ON” fluorescence response upon reaction with thiols. Additionally, to expand the scope of these “7‐hydroxy‐Borico” derivatives, particularly in biolabeling, amine or carboxylic acid functionalities amenable to (bio)conjugation have been introduced within their scaffold. Their utility has been demonstrated in the preparation of fluorescent bovine serum albumin (BSA) conjugates and “Borico”‐DOTA‐like scaffolds in an effort to design novel monomolecular multimodal fluorescence‐ radioisotope imaging agents.  相似文献   

11.
The controlled synthesis of multicomponent metal–organic frameworks (MOFs) allows for the precise placement of multiple cooperative functional groups within a framework, leading to emergent synergistic effects. Herein, we demonstrate that turn‐on fluorescence sensors can be assembled by combining a fluorophore and a recognition moiety within a complex cavity of a multicomponent MOF. An anthracene‐based fluorescent linker and a hemicyanine‐containing CN?‐responsive linker were sequentially installed into the lattice of PCN‐700. The selective binding of CN? to hemicyanine inhibited the energy transfer between the two moieties, resulting in a fluorescence turn‐on effect. Taking advantage of the high tunability of the MOF platform, the ratio between anthracene and the hemicyanine moiety could be fine‐tuned in order to maximize the sensitivity of the overall framework. The optimized MOF‐sensor had a CN?‐detection limit of 0.05 μm , which is much lower than traditional CN? fluorescent sensors (about 0.2 μm ).  相似文献   

12.
An unprecedented asymmetric desymmetrization of meso‐epoxides, derived from cyclopentene‐1,3‐diones, with 2‐mercaptobenzothiazoles has been realized. It was efficiently catalyzed by a chiral DyIII/N,N′‐dioxide complex through a thiolysis/elimination sequence. This remote stereocontrol strategy provides facile access to synthetically versatile cyclopentene derivatives bearing an all‐carbon quaternary stereogenic center in high yield and excellent enantioselectivity. Intriguingly, optically active thiophene could be readily generated from the obtained product through an efficient one‐pot protocol.  相似文献   

13.
A high yield one pot synthesis of 2‐(2‐hydroxyaryl)‐1H‐benzirrndazole derivatives by 2‐hydroxy aromatic aldehydes with aromatic 1,2‐diamines in the presence of manganese(III) acetate at room temperature was developed. Nine fluorescencers 2‐(2‐hydroxyaryl)‐1H‐benzirrndazoles with substituent(s) X (X = H, CH3, CH3O, Cl) and two fluorescencers 2‐(2‐hydroxyaryl)‐1H‐naphth[2,3‐d]imidazoles with substituent of H or Cl were prepared in 38–87% yield and the ultraviolet absorption and fluorescent spectra of the eleven compounds synthesized were measured in methanol. The fluorescent characteristics of the 2‐(2‐hydroxyaryl)benzimidazole derivatives prepared were investigated on the basis of excited‐state intramolecular proton transfer mechanism, Stokes' shift, quantum yield, and the relationship between fluorescent intensity and the substituents were derived.  相似文献   

14.
Enantioseparation of a few commonly administered racemic β‐adrenolytics (namely, carvedilol, betaxolol, salbutamol and bisoprolol) has been achieved using a water micellar mobile phase containing surfactants (sodium dodecyl sulphate and Brij‐35) without organic solvents as a new approach in RP‐HPLC. Two chiral derivatizing reagents based on enantiomerically pure (S )‐(−)‐levofloxacin were synthesized using N ‐hydroxysuccinimide and N ‐hydroxybenzotriazole as the activation auxiliaries. Diastereomeric derivatives of the chosen β‐adrenolytics were synthesized under microwave irradiation in a very short reaction time. The (S )‐(−)‐levofloxacin moiety enhanced molar absorbance of the diastereomeric derivatives resulting in very low limit of detection (1.618 and 4.902 ng/mL, respectively, for diastereomeric derivatives of (RS )‐betaxolol and better resolution with lower retention times (for all the analytes), in comparison to literature reports. There was 15–20 times less consumption of mobile phase because of lower retention time.  相似文献   

15.
Novel 2‐{4‐[1‐(pyridine‐2‐yl)‐1H‐pyrazol‐3‐yl] phenyl}‐2H‐naphtho [1,2‐d] [1,2,3] triazolyl fluorescent derivatives were synthesized from p‐nitrophenylacetic acid and 2‐hydrazino pyridine through Vilsmeier–Haack and diazotization reactions. Photophysical properties were evaluated, and results show that compounds have good fluorescence quantum yields. Thermal analysis showed that they are reasonably stable. The structures of the compounds were confirmed by FT‐IR, 1H NMR, 13C NMR, and mass spectral and elemental analysis.  相似文献   

16.
The structure of the title compound [systematic name: bis(adamantan‐1‐aminium) tetrachloridozincate(II)–1,4,7,10,13,16‐hexaoxacyclooctadecane–water (1/1/1)], (C10H18N)2[ZnCl4]·C12H24O6·H2O, consists of supramolecular rotator–stator assemblies and ribbons of hydrogen bonds parallel to [010]. The assemblies are composed of one protonated adamantan‐1‐aminium cation and one crown ether molecule (1,4,7,10,13,16‐hexaoxacyclooctadecane) to give an overall [(C10H18N)(18‐crown‐6)]+ cation. The –NH3+ group of the cation nests in the crown and links to the crown‐ether O atoms through N—H...O hydrogen bonds. The 18‐crown‐6 ring adopts a pseudo‐C3v conformation. The second adamantan‐1‐aminium forms part of ribbons of adamantan‐1‐aminium–water–tetrachloridozincate units which are interconnected by O—H...Cl, N—H...O and N—H...Cl hydrogen bonds via three different continuous rings with R54(12), R43(10) and R33(8) motifs.  相似文献   

17.
Aryl‐furyl substituted pyrazolines 2a–c and 4a–c were prepared by the reaction of α,β‐unsaturated carbonyl compounds with hydrazine or phenyl hydrazine. N‐chloroacetyl derivatives 3a–c were obtained by the N‐acetylation of 2a–c . The antibacterial activities of synthesized pyrazolines were examined by employing the disk‐diffusion technique. All synthesized compounds showed antibacterial effects in 1200 μg concentration. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:345–347, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10159  相似文献   

18.
Altered levels of thiols in biological fluids are considered to be an important indicator for several diseases. In this article, 1,3,5,7‐tetramethyl‐8‐bromomethyl‐difluoroboradiaza‐s‐indacene is proposed as a fluorescent derivatization reagent for the determination of thiols including glutathione, cysteine, N‐acetylcysteine, and homocysteine by HPLC. Under the optimized derivatization and separation conditions, a baseline separation of all the four derivatives has been achieved using isocratic elution on an RP C8 column within 26 min. With fluorescence detection at 505 and 525 nm for the excitation and emission, respectively, the LODs (S/N = 3) are from 0.2 nM (glutathione) to 0.8 nM (cysteine). The feasibility of this method in real samples has been evaluated by the determination of thiols in human plasma from the healthy persons and hypertensive patients with recoveries of 92–105.3%.  相似文献   

19.
Far‐red emitting fluorescent dyes for optical microscopy, stimulated emission depletion (STED), and ground‐state depletion (GSDIM) super‐resolution microscopy are presented. Fluorinated silicon–rhodamines (SiRF dyes) and phosphorylated oxazines have absorption and emission maxima at about λ≈660 and 680 nm, respectively, possess high photostability, and large fluorescence quantum yields in water. A high‐yielding synthetic path to introduce three aromatic fluorine atoms and unconventional conjugation/solubilization spacers into the scaffold of a silicon–rhodamine is described. The bathochromic shift in SiRF dyes is achieved without additional fused rings or double bonds. As a result, the molecular size and molecular mass stay quite small (<600 Da). The use of the λ=800 nm STED beam instead of the commonly used one at λ=750–775 nm provides excellent imaging performance and suppresses re‐excitation of SiRF and the oxazine dyes. The photophysical properties and immunofluorescence imaging performance of these new far‐red emitting dyes (photobleaching, optical resolution, and switch‐off behavior) are discussed in detail and compared with those of some well‐established fluorophores with similar spectral properties.  相似文献   

20.
β‐Substituted chiral γ‐aminobutyric acids feature important biological activities and are valuable intermediates for the synthesis of pharmaceuticals. Herein, an efficient catalytic enantioselective approach for the synthesis of β‐substituted γ‐aminobutyric acid derivatives through visible‐light‐induced photocatalyst‐free asymmetric radical conjugate additions is reported. Various β‐substituted γ‐aminobutyric acid analogues, including previously inaccessible derivatives containing fluorinated quaternary stereocenters, were obtained in good yields (42–89 %) and with excellent enantioselectivity (90–97 % ee). Synthetically valuable applications were demonstrated by providing straightforward synthetic access to the pharmaceuticals or related bioactive compounds (S)‐pregabalin, (R)‐baclofen, (R)‐rolipram, and (S)‐nebracetam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号