共查询到20条相似文献,搜索用时 0 毫秒
1.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2018,130(18):5075-5079
Reported here is the chelate effect as a design principle for tuning heterogeneous catalysts for electrochemical CO2 reduction. Palladium functionalized with a chelating tris‐N‐heterocyclic carbene (NHC) ligand (Pd‐timtmbMe) exhibits a 32‐fold increase in activity for electrochemical reduction of CO2 to C1 products with high Faradaic efficiency (FEC1=86 %) compared to the parent unfunctionalized Pd foil (FE=23 %), and with sustained activity relative to a monodentate NHC‐ligated Pd electrode (Pd‐mimtmbMe). The results highlight the contributions of the chelate effect for tailoring and maintaining reactivity at molecular‐materials interfaces enabled by surface organometallic chemistry. 相似文献
2.
3.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(46):14910-14914
Two‐dimensional (2D) materials are known to be useful in catalysis. Engineering 3D bulk materials into the 2D form can enhance the exposure of the active edge sites, which are believed to be the origin of the high catalytic activity. Reported herein is the production of 2D “few‐layer” antimony (Sb) nanosheets by cathodic exfoliation. Application of this 2D engineering method turns Sb, an inactive material for CO2 reduction in its bulk form, into an active 2D electrocatalyst for reduction of CO2 to formate with high efficiency. The high activity is attributed to the exposure of a large number of catalytically active edge sites. Moreover, this cathodic exfoliation process can be coupled with the anodic exfoliation of graphite in a single‐compartment cell for in situ production of a few‐layer Sb nanosheets and graphene composite. The observed increased activity of this composite is attributed to the strong electronic interaction between graphene and Sb. 相似文献
4.
5.
Arnaud Thevenon Alonso Rosas‐Hernndez Jonas C. Peters Theodor Agapie 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(47):17108-17114
Bridging homogeneous molecular systems with heterogeneous catalysts is a promising approach for the development of new electrodes, combining the advantages of both approaches. In the context of CO2 electroreduction, molecular enhancement of planar copper electrodes has enabled promising advancement towards high Faradaic efficiencies for multicarbon products. Besides, nanostructured copper electrodes have also demonstrated enhanced performance at comparatively low overpotentials. Herein, we report a novel and convenient method for nanostructuring copper electrodes using N,N′‐ethylene‐phenanthrolinium dibromide as molecular additive. Selectivities up to 70 % for C≥2 products are observed for more than 40 h without significant change in the surface morphology. Mechanistic studies reveal several roles for the organic additive, including: the formation of cube‐like nanostructures by corrosion of the copper surface, the stabilization of these nanostructures during electrocatalysis by formation of a protective organic layer, and the promotion of C≥2 products. 相似文献
6.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(47):15323-15326
A series of heterobimetallic complexes containing three‐center, two‐electron Au−H−Cu bonds have been prepared from addition of a parent gold hydride to a bent d10 copper(I) fragment. These highly unusual heterobimetallic complexes represent a missing link in the widely investigated series of neutral and cationic coinage metal hydride complexes containing Cu−H−Cu and M−H−M+ moieties (M=Cu, Ag). The well‐defined heterobimetallic hydride complexes act as precatalysts for the conversion of CO2 into HCO2Bpin with HBpin as the reductant. The selectivity of the heterobimetallic complexes for the catalytic production of a formate equivalent surpasses that of the parent monomeric Group 11 complexes. 相似文献
7.
8.
Hai‐Xia Zhang Qin‐Long Hong Jing Li Fei Wang Xinsong Huang Shumei Chen Wenguang Tu Dingshan Yu Rong Xu Tianhua Zhou Jian Zhang 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(34):11878-11882
Photocatalytic reduction of CO2 to value‐added fuel has been considered to be a promising strategy to reduce global warming and shortage of energy. Rational design and synthesis of catalysts to maximumly expose the active sites is the key to activate CO2 molecules and determine the reaction selectivity. Herein, we synthesize a well‐defined copper‐based boron imidazolate cage (BIF‐29) with six exposed mononuclear copper centers for the photocatalytic reduction of CO2. Theoretical calculations show a single Cu site including weak coordinated water delivers a new state in the conduction band near the Fermi level and stabilizes the *COOH intermediate. Steady‐state and time‐resolved fluorescence spectra show these Cu sites promote the separation of electron–hole pairs and electron transfer. As a result, the cage achieves solar‐driven reduction of CO2 to CO with an evolution rate of 3334 μmol g?1 h?1 and a high selectivity of 82.6 %. 相似文献
9.
Jin Xie Bo‐Quan Li Hong‐Jie Peng Yun‐Wei Song Jia‐Xing Li Ze‐Wen Zhang Qiang Zhang 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(15):5017-5021
The preparation of carbon materials usually involves the decomposition of precursors and the reorganization of the as‐generated fragments. However, the cleavage of bonds and the simultaneous formation of new bonds at nearly the same positions prevents effective yet precise fabrication. Herein, a supramolecular precursor, cucurbit[6]uril, that contains multiple bonds with distinct bond strengths is proposed to decouple the twin problem of simultaneous bond cleavage and formation, allowing multistage transformations to hierarchical porous carbon and metal‐doped carbon in a single yet effective pyrolysis step without the need of a template or additional purification. As a proof‐of‐concept, the Fe‐doped carbon electrocatalysts realized a Pt/C‐like half‐wave potential of 0.869 V vs. RHE and small Tafel slope of 51.3 mV dec?1 in oxygen reduction reaction. 相似文献
10.
11.
12.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(31):9181-9185
Coating solid surfaces with cellulose nanofibril (CNF) monolayers via physical deposition was found to keep the surfaces free of a variety of oils, ranging from viscous engine oil to polar n ‐butanol, upon water action. The self‐cleaning function was well correlated with the unique molecular structure of the CNF, in which abundant surface carboxyl and hydroxy groups are uniformly, densely, and symmetrically arranged to form a polar corona on a crystalline nanocellulose strand. This isotropic core–corona configuration offers new and easily adoptable guidance to design self‐cleaning surfaces at the molecular level. Thanks to its excellent self‐cleaning behavior, the CNF coating converted conventional meshes into highly effective membranes for oil–water separation with no prior surface treatment required. 相似文献
13.
14.
Xiaofu Sun Chunjun Chen Shoujie Liu Song Hong Qinggong Zhu Qingli Qian Buxing Han Jing Zhang Lirong Zheng 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(14):4717-4721
Electrochemical reduction of CO2 into energy‐dense chemical feedstock and fuels provides an attractive pathway to sustainable energy storage and artificial carbon cycle. Herein, we report the first work to use atomic Ir electrocatalyst for CO2 reduction. By using α‐Co(OH)2 as the support, the faradaic efficiency of CO could reach 97.6 % with a turnover frequency (TOF) of 38290 h?1 in aqueous electrolyte, which is the highest TOF up to date. The electrochemical active area is 23.4‐times higher than Ir nanoparticles (2 nm), which is highly conductive and favors electron transfer from CO2 to its radical anion (CO2.?). Moreover, the more efficient stabilization of CO2.? intermediate and easy charge transfer makes the atomic Ir electrocatalyst facilitate CO production. Hence, α‐Co(OH)2‐supported atomic Ir electrocatalysts show enhanced CO2 activity and stability. 相似文献
15.
Cheol Hun Park Jae Hun Lee Jung Pyo Jung Wooseop Lee Du Yeol Ryu Jong Hak Kim 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(4):1155-1159
The structural orientation of an amphiphilic crystalline polymer to a highly ordered microphase‐separated lamellar structure on a hydrophobic surface is presented. It is formed by the surface graft polymerization of poly(ethylene glycol)behenyl ether methacrylate onto poly(trimethylsilyl) propyne in the presence of allylamine. In particular, allylamine plays a pivotal role in controlling the crystalline phase, configuration, and permeation properties. The resulting materials are effectively used to improve the CO2 capture property of membranes. Upon the optimization of the reaction conditions, a high CO2 permeability of 501 Barrer and a CO2/N2 ideal selectivity of 77.2 are obtained, which exceed the Robeson upper bound limit. It is inspiring to surpass the upper bound limit via a simple surface modification method. 相似文献
16.
Da Hye Won Hyeyoung Shin Jaekang Koh Jaehoon Chung Hee Sang Lee Hyungjun Kim Seong Ihl Woo 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2016,128(32):9443-9446
Electrocatalytic CO2 conversion into fuel is a prospective strategy for the sustainable energy production. However, still many parts of the catalyst such as low catalytic activity, selectivity, and stability are challenging. Herein, a hierarchical hexagonal Zn catalyst showed highly efficient and, more importantly, stable performance as an electrocatalyst for selectively producing CO. Moreover, we found that its high selectivity for CO is attributed to morphology. In electrochemical analysis, Zn (101) facet is favorable to CO formation whereas Zn (002) facet favors the H2 evolution during CO2 electrolysis. Indeed, DFT calculations showed that (101) facet lowers a reduction potential for CO2 to CO by more effectively stabilizing a .COOH intermediate than (002) facet. This further suggests that tuning the crystal structure to control (101)/(002) facet ratio of Zn can be considered as a key design principle to achieve a desirable product from Zn catalyst. 相似文献
17.
18.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(42):13099-13104
The electrochemical reduction of CO2 into fuels has gained significant attention recently as source of renewable carbon‐based fuels. The unique high selectivity of copper in the electrochemical reduction of CO2 to hydrocarbons has called much interest in discovering its mechanism. In order to provide significant information about the role of oxygen in the electrochemical reduction of CO2 on Cu electrodes, the conditions of the surface structure and the composition of the Cu single crystal electrodes were controlled over time. This was achieved using pulsed voltammetry, since the pulse sequence can be programmed to guarantee reproducible initial conditions for the reaction at every fraction of time and at a given frequency. In contrast to the selectivity of CO2 reduction using cyclic voltammetry and chronoamperometric methods, a large selection of oxygenated hydrocarbons was found under alternating voltage conditions. Product selectivity towards the formation of oxygenated hydrocarbon was associated to the coverage of oxygen species, which is surface‐structure‐ and potential‐dependent. 相似文献
19.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(6):1622-1626
As a remarkable class of plasmonic materials, two dimensional (2D) semiconductor compounds have attracted attention owing to their controlled manipulation of plasmon resonances in the visible light spectrum, which outperforms conventional noble metals. However, tuning of plasmonic resonances for 2D semiconductors remains challenging. Herein, we design a novel method to obtain amorphous molybdenum oxide (MoO3) nanosheets, in which it combines the oxidation of MoS2 and subsequent supercritical CO2‐treatment, which is a crucial step for the achievement of amorphous structure of MoO3. Upon illumination, hydrogen‐doped MoO3 exhibits tuned surface plasmon resonances in the visible and near‐IR regions. Moreover, a unique behavior of the amorphous MoO3 nanosheets has been found in an optical biosensing system; there is an optimum plasmon resonance after incubation with different BSA concentrations, suggesting a tunable plasmonic device in the near future. 相似文献