首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As an emerging member of endohedral fullerenes, metal cyanide clusterfullerenes (CYCF) are unique in terms of the encapsulation of a monometallic cluster. To date the reported carbon cages of CYCFs are limited to C82 and C76, and little is known about the chemical reactivity of CYCFs. Herein, two isomers of the first C84‐based CYCFs, YCN@C84, were isolated as trifluoromethyl derivatives, including YCN@C84(23)(CF3)18 and three isomers of YCN@C84(13)(CF3)16, which are based on a unique chiral C 2‐C84(13) cage. As a common feature of the CF3 addition patterns, the YCN@C84(CF3)16/18 compounds are stabilized by the formation of isolated C=C bonds and benzenoid rings on the carbon cages. The interplay between the endohedral YCN cluster and the exhohedral CF3 addends was unveiled according to single‐crystal X‐ray diffraction studies, thus offering new insight into the chemical reactivity of CYCFs.  相似文献   

2.
Perfluoroalkylation of a higher fullerene mixture with CF3I or C2F5I, followed by HPLC separation of CF3 and C2F5 derivatives, resulted in the isolation of several C84(RF)n (n=12, 16) compounds. Single‐crystal X‐ray crystallography with the use of synchrotron radiation allowed structure elucidation of eight C84(RF)n compounds containing six different C84 cages (the number of the C84 isomer is given in parentheses): C84 (23)(C2F5)12 ( I ), C84 (22)(CF3)16 ( II ), C84 (22)(C2F5)12 ( III ), C84 (11)(C2F5)12 ( IV ), C84 (16)(C2F5)12 ( V ), C84 (4)(CF3)12 ( VI with toluene and VII with hexane as solvate molecules), and C84 (18)(C2F5)12 ( VIII ). Whereas some connectivity patterns of C84 isomers (22, 23, 11) had previously been unambiguously confirmed by different methods, derivatives of C84 isomers numbers 4, 16, and 18 have been investigated crystallographically for the first time, thus providing direct proof of the connectivity patterns of rare C84 isomers. General aspects of the addition of RF groups to C84 cages are discussed in terms of the preferred positions in the pentagons under the formation of chains, pairs, and isolated RF groups.  相似文献   

3.
4.
《化学:亚洲杂志》2018,13(16):2027-2030
High‐temperature trifluoromethylation of fullerene C76 chlorination products followed by HPLC separation of C76(CF3)n derivatives resulted in the isolation and X‐ray structural characterization of thirteen C76(1)(CF3)n compounds including nine new isomers such as one isomer of C76(1)(CF3)10, two C76(1)(CF3)12, three C76(1)(CF3)14, one C76(1)(CF3)16, and two isomers of C76(1)(CF3)18. Depending on their addition patterns, C76(1)(CF3)n isomers are divided into three subgroups and discussed in terms of trifluoromethylation pathways and relative formation energies.  相似文献   

5.
The platinum complex [Pt(ItBuiPr′)(ItBuiPr)][BArF] interacts with tertiary silanes to form stable (<0 °C) mononuclear PtII σ‐SiH complexes [Pt(ItBuiPr′)(ItBuiPr)(η1‐HSiR3)][BArF]. These compounds have been fully characterized, including X‐ray diffraction methods, as the first examples for platinum. DFT calculations (including electronic topological analysis) support the interpretation of the coordination as an unusual η1‐SiH. However, the energies required for achieving a η2‐SiH mode are rather low, and is consistent with the propensity of these derivatives to undergo Si?H cleavage leading to the more stable silyl species [Pt(SiR3)(ItBuiPr)2][BArF] at room temperature.  相似文献   

6.
Novel difluoromethylenated [70]fullerene derivatives, C70(CF2)n (n=1–3), were obtained by the reaction of C70 with sodium difluorochloroacetate. Two major products, isomeric C70(CF2) mono‐adducts with [6,6]‐open and [6,6]‐closed configurations, were isolated and their homofullerene and methanofullerene structures were reliably determined by a variety of methods that included X‐ray analysis and high‐level spectroscopic techniques. The [6,6]‐open isomer of C70(CF2) constitutes the first homofullerene example of a non‐hetero [70]fullerene derivative in which functionalisation involves the most reactive bond in the polar region of the cage. Voltammetric estimation of the electron affinity of the C70(CF2) isomers showed that it is substantially higher for the [6,6]‐open isomer (the 70‐electron π‐conjugated system is retained) than the [6,6]‐closed form, the latter being similar to the electron affinity of pristine C70. In situ ESR spectroelectrochemical investigation of the C70(CF2) radical anions and DFT calculations of the hyperfine coupling constants provide evidence for the first example of an inter‐conversion between the [6,6]‐closed and [6,6]‐open forms of a cage‐modified fullerene driven by an electrochemical one‐electron transfer. Thus, [6,6]‐closed C70(CF2) constitutes an interesting example of a redox‐switchable fullerene derivative.  相似文献   

7.
C2‐C70(CF3)8 was found to be a very promising substrate in the Bingel and the Bingel–Hirsch reactions combining perfect regioselectivity with much higher reactivity compared to its analogs. The reactions with diethyl malonate yield a single isomer of the monoadduct C70(CF3)8[C(CO2Et)2] and a single C2‐symmetrical bisadduct C70(CF3)8[C(CO2Et)2]2. The Bingel–Hirsch variation is particularly interesting in that it additionally affords, in a similar regioselective manner, the unexpected alkylated derivatives C70(CF3)8[CH(CO2Et)2]H and C70(CF3)8[C(CO2Et)2][CH(CO2Et)2]H. The novel compounds have been isolated and structurally characterized by means of 1H and 19F NMR spectroscopy as well as single‐crystal X‐ray diffraction. The mechanistic and regiochemical aspects of the reaction are explained with the aid of DFT calculations.  相似文献   

8.
9.
The synthesis, isolation and spectroscopic characterization of holmium‐based mixed metal nitride clusterfullerenes HoxSc3?xN@C80 (x=1, 2) are reported. Two isomers of HoxSc3?xN@C80 (x=1, 2) were synthesized by the reactive gas atmosphere method and isolated by multistep recycling HPLC. The isomeric structures of HoxSc3?xN@C80 (x=1, 2) were characterized by laser‐desorption time‐of‐flight (LD‐TOF) mass spectrometry and UV/Vis/NIR, FTIR and Raman spectroscopy. A comparative study of MxSc3?xN@C80 (M=Gd, Dy, Lu, Ho) demonstrates the dependence of their electronic and vibrational properties on the encaged metal. Despite the distinct perturbation induced by 4f10 electrons, we report the first paramagnetic 13C NMR study on HoxSc3?xN@C80 (I; x=1, 2) and confirm Ih‐symmetric cage structure. A 45Sc NMR study on HoSc2N@C80 (I, II) revealed a temperature‐dependent chemical shift in the temperature range of 268–308 K.  相似文献   

10.
Trifluoromethylation of a higher fullerene mixture with CF3I was performed in ampoules at 550 °C. HPLC separation followed by crystal growth and X‐ray diffraction study resulted in the structure elucidation of nine CF3 derivatives of D2d‐C84 (isomer 23). The molecular structures of C84(23)(CF3)4, C84(23)(CF3)8, C84(23)(CF3)10, C84(23)(CF3)12, two isomers of C84(23)(CF3)14, two isomers of C84(23)(CF3)16, and C84(23)(CF3)18 were discussed in terms of their addition patterns and the relative formation energies. Extensive theoretical DFT calculations were performed to identify the most stable molecular structures. It was found that the addition of CF3 groups to the C84(23) fullerene is governed by two main rules: no additions in positions of triple hexagon junctions and predominantly para additions in C6(CF3)2 hexagons on the fullerene cage. The only exception with an isolated CF3 group in C84(23)(CF3)12 is discussed in more detail.  相似文献   

11.
Analytically pure C60H18 is obtained by a Ru3 cluster complexation and decomplexation method. The crystal structure of C60H18 consists of one flattened hemisphere, to which all 18 hydrogen atoms are symmetrically bonded, and one curved hemisphere akin to C60. A benzenoid ring in the flattened hemisphere is isolated from the residual π systems by a belt composed of sp3‐hybridized CH units. The average out‐of‐plane distances for carbon atoms attached to the benzenoid ring (0.14 Å) is substantially larger than that found in C60F18 (0.06 Å). Several long C(sp3)?C(sp3) single bond lengths [1.61(3)–1.65(3) Å] are observed for C60H18. The reaction of [Ru3(CO)12] and C60H18 produces [Ru3(CO)93‐η222‐C60H18)] ( 1 ), where the Ru3 triangle is regiospecifically linked to the hexagon opposite to the benzenoid ring. Compound 1 is the first transition metal complex of a polyhydrofullerene (fullerane). C60H18 and 1 have been characterized by 1H and 13C NMR, UV/Vis, and mass spectroscopies. The HOMO–LUMO gap of C60H18 is evaluated to be 1.51 V by cyclic voltammetry.  相似文献   

12.
Trifluoromethylation of higher fullerene mixtures with CF3I was performed in ampoules at 400 to 420 and 550 to 560 °C. HPLC separation followed by crystal growth and X‐ray diffraction studies allowed the structure elucidation of nine CF3 derivatives of D2‐C84 (isomer 22). Molecular structures of two isomers of C84(22)(CF3)12, two isomers of C84(22)(CF3)14, four isomers of C84(22)(CF3)16, and one isomer of C84(22)(CF3)20 were discussed in terms of their addition patterns and relative formation energies. DFT calculations were also used to predict the most stable molecular structures of lower CF3 derivatives, C84(22)(CF3)2–10. It was found that the addition of CF3 groups to C84(22) is governed by two rules: additions can only occur at para positions of C6(CF3)2 hexagons and no additions can occur at triple‐hexagon‐junction positions on the fullerene cage.  相似文献   

13.
The reductive coupling of an N‐heterocyclic carbene (NHC) stabilized (dibromo)vinylborane yields a 1,2‐divinyldiborene, which, although isoelectronic to a 1,3,5‐triene, displays no extended π conjugation because of twisting of the C2B2C2 chain. While this divinyldiborene coordinates to copper(I) and platinum(0) in an η2‐B2 and η4‐C2B2 fashion, respectively, it undergoes a complex rearrangement to an η4‐1,3‐diborete upon complexation with nickel(0).  相似文献   

14.
Trifluoromethylated derivatives of Sc3N@Ih‐C80 and Sc3N@D5h‐C80 were synthesized by the reaction with CF3I at 440 °C. HPLC separation of the mixture of Sc3N@D5h‐C80(CF3)n derivatives resulted in isolation and X‐ray structure determination of Sc3N@D5h‐C80(CF3)16, which represents a precursor of the known Sc3N@D5h‐C80(CF3)18. Among the CF3 derivatives of Sc3N@Ih‐C80, two new isomers of Sc3N@Ih‐C80(CF3)14 ( Sc‐14‐VI and Sc‐14‐VII ) were isolated by HPLC, and their molecular structures were determined by X‐ray diffraction, thus enabling a comprehensive comparison of altogether seven isomers. Two types of addition patterns with different orientations of the Sc3N cluster relative to the Ih‐C80 fullerene cage were established. In particular, Sc‐14‐VII represents a direct precursor of the known Sc3N@Ih‐C80(CF3)16‐ II . All molecular structures exhibit an ordered position of a Sc3N cluster inside the fullerene C80 cage.  相似文献   

15.
The ditopic germanium complex FGe(NIPr)2Ge[BF4] ( 3 [BF4]; IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene) is prepared by the reaction of the amino(imino)germylene (Me3Si)2NGeNIPr ( 1 ) with BF3?OEt2. This monocation is converted into the germylene‐germyliumylidene 3 [BArF4] [ArF=3,5‐(CF3)2‐C6H3] by treatment with Na[BArF4]. The tetrafluoroborate salt 3 [BF4] reacts with 2 equivalents of Me3SiOTf to give the novel complex (OTf)(GeNIPr)2[OTf] ( 4 [OTf]), which affords 4 [BArF4] and 4 [Al(ORF)4] [RF=C(CF3)3] after anion exchange with Na[BArF4] or Ag[Al(ORF)4], respectively. The computational, as well as crystallographic study, reveals that 4 + has significant bis(germyliumylidene) dication character.  相似文献   

16.
High‐temperature trifluoromethylation of fullerene C78 followed by HPLC separation of C78(CF3)n derivatives resulted in the isolation and X‐ray structural characterization of 15 compounds, that is, two C78(1)(CF3)10, three C78(1)(CF3)12, four C78(1)(CF3)14, and five C78(1)(CF3)16 isomers as well as one isomer of C78(1)(CF3)18. The addition patterns of the C78(1)(CF3)n molecules are discussed in terms of trifluoromethylation pathways and relative formation energies.  相似文献   

17.
D5h‐symmetric fullerene C70 (D5h‐C70) is one of the most abundant members of the fullerene family. One longstanding mystery in the field of fullerene chemistry is whether D5h‐C70 is capable of accommodating a rare‐earth metal atom to form an endohedral metallofullerene M@D5h‐C70, which would be expected to show novel electronic properties. The molecular structure of La@C70 remains unresolved since its discovery three decades ago because of its extremely high instability under ambient conditions and insolubility in organic solvents. Herein, we report the single‐crystal X‐ray structure of La@C70(CF3)3, which was obtained through in situ exohedral functionalization by means of trifluoromethylation. The X‐ray crystallographic study reveals that La@C70(CF3)3 is the first example of an endohedral rare‐earth fullerene based on D5h‐C70. The dramatically enhanced stability of La@C70(CF3)3 compared to La@C70 can be ascribed to trifluoromethylation‐induced bandgap enlargement.  相似文献   

18.
《Mendeleev Communications》2020,30(4):474-475
  1. Download : Download high-res image (235KB)
  2. Download : Download full-size image
  相似文献   

19.
20.
Treatment of the open‐cage fullerene C63H4NO2(Ph)2(Py)(N2C6H4) ( 1 ) with methanol at 150 °C results in an orifice‐enlargement reaction to give C69H8NO(CO2Me)(Ph)(Py)(N2C6H4) ( 2 ). The overall yield from C60 to isolated 2 is 6.1 % (four steps). Compound 2 contains a 24‐membered elliptic orifice that spans 8.45 Å along the major axis and 6.37 Å along the minor axis. The skeleton of 2 resembles the hypothetic C60H10 (5,5)‐carbon nanotube endcap. The cup‐shaped structure of 2 is able to include water, hydrogen cyanide, and acetylene, forming H2O@ 2 , HCN@ 2 , and C2H2@ 2 , respectively. The molecular structures of H2O@ 2 and HCN@ 2 have been determined by X‐ray crystallography. The 1H NMR spectra reveal substantial upfield shifts for the endohedral species, such as δ=?10.30 (for H2O), ?2.74 and ?14.26 (for C2H2), and ?1.22 ppm (for HCN), owing to the strong shielding effects of the fullerene cage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号