首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The 15N‐labelled iron dinitrogen complexes trans‐[FeH(N2)(PP)2]+[BPh4]? (PP = dppe, depe, dmpe) and cis‐[FeH(N2)(PP3)]+[BPh4]? were prepared in situ by exchange of unlabelled coordinated dinitrogen with 15N2. 15N NMR chemical shifts and coupling constants are reported. The 15N spectra exhibit separate signals for the metal‐bound and terminal nitrogen atoms of the coordinated N2. The 15N resonances display 15N, 15N coupling as well as 31P, 15N coupling and long‐range 15N, 1H coupling when there is a metal‐bound hydrido ligand. Exchange between free and coordinated dinitrogen was monitored by magnetization transfer between 15N‐labelled sites using an inversion–transfer–recovery experiment. Exchange between the metal‐bound and terminal nitrogen atoms of coordinated N2 was also monitored by magnetization transfer and this could proceed by N2 dissociation or by an intramolecular process. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
While CH–π interactions with target proteins are crucial determinants for the affinity of arguably every drug molecule, no method exists to directly measure the strength of individual CH–π interactions in drug–protein complexes. Herein, we present a fast and reliable methodology called PI (π interactions) by NMR, which can differentiate the strength of protein–ligand CH–π interactions in solution. By combining selective amino‐acid side‐chain labeling with 1H‐13C NMR, we are able to identify specific protein protons of side‐chains engaged in CH–π interactions with aromatic ring systems of a ligand, based solely on 1H chemical‐shift values of the interacting protein aromatic ring protons. The information encoded in the chemical shifts induced by such interactions serves as a proxy for the strength of each individual CH–π interaction. PI by NMR changes the paradigm by which chemists can optimize the potency of drug candidates: direct determination of individual π interactions rather than averaged measures of all interactions.  相似文献   

3.
Activation of ansa‐zirconocenes of the type Rac [Zr{1‐Me2Si(3‐R‐(η5‐C9H5))(3‐R′‐(η5‐C9H5))}Cl2] [R = Et, R′ = H ( 1 ); R = Pr, R′ = H ( 2 ); and R = Et, R′ = Pr ( 3 ), R, R′ = Me ( 4 ) and R, R′ = Bu ( 5 )] by MAO has been studied by UV–visible spectroscopy. Compounds 1–3 have been tested in the polymerization of ethylene at different Al:Zr ratios. UV–vis spectroscopy was used to determine a correlation between the electronic structures of ( 1–5 ) and their polymerization activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The novel aromatic ring compound 2,4‐diphospha‐3,5‐diaza‐thiole (cyclo‐SNPNP) was synthesized via flash pyrolysis of SP(N3)3 and characterized by IR spectroscopy and 15N isotope labeling. Quantum chemical computations indicate its formation by head‐to‐tail dimerization of SNP and subsequent elimination of a sulfur atom from the highly unstable boatlike six‐membered‐ring compound cyclo‐SNPSNP.  相似文献   

5.
Spatially selective heteronuclear multiple‐quantum coherence (SS HMQC) NMR spectroscopy is developed for solution studies of proteins. Due to “time‐staggered” acquisitioning of free induction decays (FIDs) in different slices, SS HMQC allows one to use long delays for longitudinal nuclear spin relaxation at high repetition rates. To also achieve high intrinsic sensitivity, SS HMQC is implemented by combining a single spatially selective 1H excitation pulse with nonselective 1H 180° pulses. High‐quality spectra were obtained within 66 s for a 7.6 kDa uniformly 13C,15N‐labeled protein, and within 45 and 90 s for, respectively, two proteins with molecular weights of 7.5 and 43 kDa, which were uniformly 2H,13C,15N‐labeled, except for having protonated methyl groups of isoleucine, leucine and valine residues.  相似文献   

6.
In this paper, we detail the results of 1H–15N correlation data obtained via 13C–15N coupling at natural abundance on a number of classes of azoles including pyrazoles, imidazoles and triazoles. The experiment produces data that is highly complementary to direct 1H–15N HMBC type correlations in that it can provide 15N chemical shift data for nitrogen that may not show up in the HMBC. This is particularly advantageous in the triazoles where 15N chemical shift can be diagnostic of regiochemistry. Because of the consistency in JCN values among the azoles, the experiment produces distinctive correlation patterns that can be used for identification of regiochemistry. The experiment can also be used to directly measure 13C–15N coupling constants. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Often, deregulation of protein activity and turnover by tyrosine nitration drives cells toward pathogenesis. Hence, understanding how the nitration of a protein affects both its function and stability is of outstanding interest. Nowadays, most of the in vitro analyses of nitrated proteins rely on chemical treatment of native proteins with an excess of a chemical reagent. One such reagent, peroxynitrite, stands out for its biological relevance. However, given the excess of the nitrating reagent, the resulting in vitro modification could differ from the physiological nitration. Here, we determine unequivocally the configuration of distinct nitrated‐tyrosine rings in single‐tyrosine mutants of cytochrome c. We aimed to confirm the nitration position by a non‐destructive method. Thus, we have resorted to 1H‐15N heteronuclear single quantum coherence(HSQC) spectra to identify the 3J(N? H) correlation between a 15N‐tagged nitro group and the adjacent aromatic proton. Once the chemical shift of this proton was determined, we compared the 1H‐13C HSQC spectra of untreated and nitrated samples. All tyrosines were nitrated at ε positions, in agreement to previous analysis by indirect techniques. Notably, the various nitrotyrosine residues show a different dynamic behaviour that is consistent with molecular dynamics computations.  相似文献   

8.
Unsymmetrical, dialkyl‐substituted N,N‐dialkyl‐N‐acyl(aroyl)thioureas show E,Z configurational isomerism at room temperature in solution, which is also expressed in the existence of cis‐[Pt(ZZ‐L‐S,O)2], cis‐[Pt(EZ‐L‐S,O)2] and cis‐[Pt(EE‐L‐S,O)2] complexes derived from these ligands. These configurational isomers were assigned by means of a double magnetization transfer 1H/13C/195Pt correlation NMR experiment, despite the fact that the long‐range 5J(195Pt, 1H) and 4J(195Pt, 13C) scalar couplings are not directly observable in their 1H and 13C spectra at high field. Depending on the ligand structure, the relative amounts of cis‐[Pt(ZZ‐L‐S,O)2], cis‐[Pt(EZ‐L‐S,O)2] and cis‐[Pt(EE‐L‐S,O)2] complexes are in the ranges 40–42% ZZ, 46–47% ZE and 12–13% EE. The cis‐bis[N‐methyl‐N‐(tert‐butyl)‐N‐(2,2‐dimethylpropanoyl)thioureato]platinum(II) complex is found to occur exclusively as the ZZ isomer. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
An ion‐neutral complex (INC)‐mediated hydride transfer reaction was observed in the fragmentation of protonated N‐benzylpiperidines and protonated N‐benzylpiperazines in electrospray ionization mass spectrometry. Upon protonation at the nitrogen atom, these compounds initially dissociated to an INC consisting of [RC6H4CH2]+ (R = substituent) and piperidine or piperazine. Although this INC was unstable, it did exist and was supported by both experiments and density functional theory (DFT) calculations. In the subsequent fragmentation, hydride transfer from the neutral partner to the cation species competed with the direct separation. The distribution of the two corresponding product ions was found to depend on the stabilization energy of this INC, and it was also approved by the study of substituent effects. For monosubstituted N‐benzylpiperidines, strong electron‐donating substituents favored the formation of [RC6H4CH2]+, whereas strong electron‐withdrawing substituents favored the competing hydride transfer reaction leading to a loss of toluene. The logarithmic values of the abundance ratios of the two ions were well correlated with the nature of the substituents, or rather, the stabilization energy of this INC. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The title compound, N′‐benzylidene‐N‐[4‐(3‐methyl‐3‐phenyl‐cyclobutyl)‐thiazol‐2‐yl]‐chloro‐acetic acid hydrazide, has been synthesized and characterized by elemental analysis, IR, 1H and 13C NMR, and X‐ray single crystal diffraction. The compound crystallizes in the orthorhombic space group P 21 21 21 with a = 5.8671 (3) Å, b = 17.7182 (9) Å, and c = 20.6373 (8) Å. Moreover, the molecular geometry from X‐ray experiment, the molecular geometry, vibrational frequencies, and gauge‐including atomic orbital 1H and 13C chemical shift values of the title compound in the ground state have been calculated by using the Hartree–Fock and density functional methods (B3LYP) with 6‐31G(d) and 6‐31G(d,p) basis sets. The results of the optimized molecular structure are exhibited and compared with the experimental X‐ray diffraction. Besides, molecular electrostatic potential, Frontier molecular orbitals, and thermodynamic properties of the title compound were determined at B3LYP/6‐31G(d) levels of theory. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

11.
Metallocene dihalides and derivatives thereof are of great interest as precursors for catalysts in polymerization reactions, as antitumor agents and, due to their increased stability, as suitable starting materials in salt metathesis reactions and the generation of metallocene fragments. We report the synthesis and structural characterization of a series of eleven substituted bis(η5‐cyclopentadienyl)titanium dihalides, namely bis[η5‐1‐(diphenylmethyl)cyclopentadienyl]difluoridotitanium(IV), [Ti(C18H15)2F2], bis{η5‐1‐[bis(4‐methylphenyl)methyl]cyclopentadienyl}difluoridotitanium(IV), [Ti(C20H19)2F2], and bis{η5‐1‐[bis(adamantan‐2‐yl)methyl]cyclopentadienyl}difluoridotitanium(IV), [Ti(C15H19)2F2], together with the bromide and iodide analogues, and the chloride analogues of the diphenylmethyl and adamantyl complexes. These eleven complexes were prepared by the reaction of the corresponding bis(η51‐pentafulvene)titanium complexes with different hydrogen halides (Cl, Br and I). The titanocene fluorides become available via chloride–fluoride exchange reactions.  相似文献   

12.
The ring‐opening polymerization (ROP) behavior of a variety of substituted 1,1′‐ethylenylferrocenes, or dicarba[2]ferrocenophanes, is reported. The electronic absorption spectra and tilted solid‐state structures of the monomers rac‐[Fe(η5‐C5H4)2(CHiPr)2] ( 7 ), [Fe(η5‐C5H4)2(C(H)MeCH2)] ( 8 ), and rac‐[Fe(η5‐C5H4)2(CHPh)2] ( 9 ) are consistent with the presence of substantial ring strain, which was exploited to synthesize soluble, well‐defined polyferrocenylethylenes (PFEs) [Fe(η5‐C5H4)2(C(H)MeCH2)]n ( 12 ) and [Fe(η5‐C5H4)2(CHPh)2]n ( 13 ) through photocontrolled ROP. Polymer chain lengths could be controlled by the monomer‐to‐initiator ratio up to about 50 repeat units and, consistent with the “living” nature of the polymerizations, sequential block copolymerization with a sila[1]ferrocenophane led to polyferrocenylethylene–polyferrocenylsilane (PFE‐b‐PFS) block copolymers ( 14 and 15 ). PFE polymers 12 and 13 showed two reversible oxidation waves, indicative of appreciable Fe???Fe interactions along the polymer backbone. The diblock copolymers were characterized by NMR spectroscopy, GPC analysis, and cyclic voltammetry.  相似文献   

13.
We have shown that the methodology based on the estimation of root‐mean‐square deviation (RMSD) between two sets of chemical shifts is very useful to rapidly assign the spectral signatures of 1HN, 13Cα, 13Cβ, 13C′, 1Hα and 15N spins of a given protein in one state from the knowledge of its resonance assignments in a different state, without resorting to routine established procedures (manual and automated). We demonstrate the utility of this methodology to rapidly assign the 3D spectra of a metal‐binding protein in its holo‐state from the knowledge of its assignments in apo‐state, the spectra of a protein in its paramagnetic state from the knowledge of its assignments in diamagnetic state and, finally, the spectra of a mutant protein from the knowledge of the chemical shifts of the corresponding wild‐type protein. The underlying assumption of this methodology is that, it is impossible for any two amino acid residues in a given protein to have all the six chemical shifts degenerate and that the protein under consideration does not undergo large conformational changes in going from one conformational state to another. The methodology has been tested using experimental data on three proteins, M‐crystallin (8.5 kDa, predominantly β‐sheet, for apo‐ to holo‐state), Calbindin (7.5 kDa, predominantly α‐helical, for diamagnetic to paramagnetic state and apo to holo) and EhCaBP1 (14.3 kDa, α‐helical, the wild‐type protein with one of its mutant). In all the cases, the extent of assignment is found to be greater than 85%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
As a unique and unappreciated protein posttranslational modification, arginine N‐glycosylation was recently discovered to play an important role in the process that bacteria counteract host defenses. To provide chemical tools for further proteomic and biochemical studies on arginine N‐glycosylation, we report the first general strategy for a rapid and cost‐effective synthesis of glycopeptides carrying single or multiple arginine N‐GlcNAcyl groups. These glycopeptides were successfully utilized to generate the first antibodies that can specifically recognize arginine N‐GlcNAcylated peptides or proteins in a sequence‐independent manner.  相似文献   

15.
The reactions of unsymmetric phosphorus ylides of the type [Ph2P(CH2)nPPh2?C(H)C(O)C6H4p‐CN] (n = 1 (Y1); n = 2 (Y2)) with C60 and M(dba)2 (M = Pd or Pt; dba = dibenzylideneacetone) are reported. Based on the various coordination modes of these ylides in complexation, the following new Pd/Pt–cyclopropa[60]fullerene complexes were obtained: P,C‐coordinated [(η2‐C60)Pd(κ2‐Y1)] ( 1 ) and [(η2‐C60)Pt(κ2‐Y1)] ( 2 ) complexes and P‐coordinated [(η2‐C60)Pd(Y2)2] ( 3 ) and [(η2‐C60)Pt(Y2)2] ( 4 ) complexes. These compounds were characterized using Fourier transform infrared, UV–visible and NMR (1H, 13C and 31P) spectroscopies and scanning electron microscopy. Furthermore, cytotoxicity studies showed that nanoparticles of these complexes can be used as non‐toxic labels for cellular imaging application. Also energy decomposition analysis results revealed that the percentage contribution of ΔEelec in total interaction energy is considerably larger than that of ΔEorb. Thus, in all complexes the (η2‐C60)M? (Y1) bond is considerably more electrostatic in nature than the (η2‐C60)? M(Y1) bond. Finally, by application of the Taguchi method for optimization of parameters in Suzuki–Miyaura reaction, the catalytic activity of Pd complexes 1 and 3 was investigated in the cross‐coupling reaction of various aryl chlorides with phenylboronic acid. According to analysis of variance results, solvent has the highest F value and it has high contribution percentage (36.75%) to the yield of Suzuki–Miyaura reaction.  相似文献   

16.
Two hybrids based on 1,8‐disubstituted carbazole, 1,8‐OXDCz and 1,8‐mBICz , have been designed and synthesized through a facile process. The incorporation of oxadiazole or N‐phenylbenzimidazole moieties at the 1,8‐positions of carbazole greatly improves its morphological stability, giving glass transition temperatures (Tg) as high as 138 and 154 °C, respectively. Blue phosphorescent organic light‐emitting devices (PhOLEDs) with 1,8‐mBICz exhibit almost the same performance as a similarly structured device based on the mCP host, and green PhOLEDs employing the new host material 1,8‐OXDCz exhibit an ideal turn‐on voltage (2.5 V at 1.58 cd m?2), a maximum current efficiency (ηc,max) of 73.9 cd A?1, and a power efficiency (ηp,max) of 89.7 lm W?1. These results are among the best performances of [Ir(ppy)3]‐based devices with simple device configurations.  相似文献   

17.
Benzothiazole derivatives are a class of privileged molecules due to their biological activity and pharmaceutical applications. One route to these molecules is via intramolecular cyclization of thioureas to form substituted 2‐aminobenzothiazoles, but this often requires harsh conditions or employs expensive metal catalysts. Herein, the copper(II)‐ and gold(III)‐mediated cyclizations of thioureas to substituted 2‐aminobenzothiazoles are reported. The single‐crystal X‐ray structures of the thiourea N‐(3‐methoxyphenyl)‐N ′‐(pyridin‐2‐yl)thiourea, C13H13N3OS, and the intermediate metal complexes aquabis[5‐methoxy‐N‐(pyridin‐2‐yl‐κN )‐1,3‐benzothiazol‐2‐amine‐κN 3]copper(II) dinitrate, [Cu(C13H11N3OS)2(H2O)](NO3)2, and bis{2‐[(5‐methoxy‐1,3‐benzothiazol‐2‐yl)amino]pyridin‐1‐ium} dichloridogold(I) chloride monohydrate, (C13H12N3OS)2[AuCl2]Cl·H2O, are reported. The copper complex exhibits a distorted trigonal–bipyramidal geometry, with direct metal‐to‐benzothiazole‐ligand coordination, while the gold complex is a salt containing the protonated uncoordinated benzothiazole, and offers evidence that metal reduction (in this case, AuIII to AuI) is required for the cyclization to proceed. As such, this study provides further mechanistic insight into the role of the metal cations in these transformations.  相似文献   

18.
The effects of the identity and position of basic residues on peptide dissociation were explored in the positive and negative modes. Low‐energy collision‐induced dissociation (CID) was performed on singly protonated and deprotonated heptapeptides of the type: XAAAAAA, AAAXAAA, AAAAAXA and AAAAAAX, where X is arginine (R), lysine (K) or histidine (H) residues and A is alanine. For [M + H]+, the CID spectra are dominated by cleavages adjacent to the basic residues and the majority of the product ions contain the basic residues. The order of a basic residue's influence on fragmentation of [M + H]+ is arginine > histidine ≈ lysine, which is also the order of decreasing gas‐phase basicity for these amino acids. These results are consistent with the side chains of basic residues being positive ion charge sites and with the more basic arginine residues having a higher retention (i.e. sequestering) of the positive charge. In contrast, for [M ? H]? the identity and position of basic residues has almost no effect on backbone fragmentation. This is consistent with basic residues not being negative mode charge sites. For these peptides, more complete series of backbone fragments, which are important in the sequencing of unknowns, can be found in the negative mode. Spectra at both polarities contain C‐terminal y‐ions, but yn+ has two more hydrogens than the corresponding yn?. Another major difference is the production of the N‐terminal backbone series bn+ in the positive mode and cn? in the negative mode. Thus, comparison of positive and negative ion spectra with an emphasis on searching for pairs of ions that differ by 2 Da (yn+ vs yn?) and by 15 Da (bn+ vs cn?) may be a useful method for determining whether a product ion is generated from the C‐terminal or the N‐terminal end of a peptide. In addition, a characteristic elimination of NH?C?NH from arginine residues is observed for deprotonated peptides. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

20.
NG,NG‐dimethyl‐l ‐arginine (asymmetric dimethylarginine, ADMA),NG‐monomethyl‐l ‐arginine (l ‐NMMA) and NG,NG‐dimethyl‐l ‐arginine (symmetric dimethylarginine, SDMA) are released during hydrolysis of proteins containing methylated arginine residues. ADMA and l ‐NMMA inhibit nitric oxide synthase by competing with l ‐arginine substrate. All three methylarginine derivatives also inhibit arginine transport. To enable investigation of methylarginines in diseases involving impaired nitric oxide synthesis, we developed a high‐performance liquid chromatography (HPLC) assay to simultaneously quantify arginine, ADMA, l ‐NMMA and SDMA. Our assay requires 12 μL of plasma and is ideal for applications where sample availability is limited. We extracted arginine and methylarginines with mixed‐mode cation‐exchange columns, using synthetic monoethyl‐l ‐arginine as an internal standard. Metabolites were derivatized with ortho‐phthaldialdeyhde and 3‐mercaptopropionic acid, separated by reverse‐phase HPLC and quantified with fluorescence detection. Standard curve linearity was ≥0.9995 for all metabolites. Inter‐day coefficient of variation (CV) values were ≤5% for arginine, ADMA and SDMA in human plasma and for arginine and ADMA in mouse plasma. The CV value for l ‐NMMA was higher in human (10.4%) and mouse (15.8%) plasma because concentrations were substantially lower than ADMA and SDMA. This assay provides unique advantages of small sample volume requirements, excellent separation of target metabolites from contaminants and validation for both human and mouse plasma samples. © 2015 The Authors Biomedical Chromatography published by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号