首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we investigate highly efficient sonogel carbon electrode (SGC/TiO2) modified with nanostructured titanium dioxide synthesized via sol-gel method employing surfactant template for tailor-designing the structural properties of TiO2. The stable SGC/TiO2 electrode detects catechol, a neurotransmitter, in the presence of ascorbic acid, a common interferent, using cyclic voltammetry. A possible rationale for the stable catechol detection of SGC/TiO2 electrode is attributed to most likely the adsorption of catechol onto highly porous TiO2 (surface area of 147 m2 g−1 and porosity of 46.2%), and the formation of C6H4(OTi)2 bond between catechol and TiO2. The catechol absorbed onto TiO2 rapidly reaches the SGC surface, then is oxidized, involving two electrons (e) and two protons (H+). As a result, the surface of TiO2 acts as an electron-transfer accelerator between the SGC electrode and catechol. In addition to the quantitative and qualitative detection of catechol, the SGC/TiO2 electrode developed here meets the profitable features of electrode including mechanical stability, physical rigidity, and enhanced catalytic properties.  相似文献   

2.
An 1-(pyridylazo)-2-naphthol modified glassy carbon electrode has been investigated as sensor for the measurement of trace levels of Cd2+. Cd2+ is deposited on the surface of a PAN modified glassy carbon electrode at –1.10 V (vs. SCE) via forming Cd2+–PAN and subsequent reduction at the electrode. In the following step, Cd-PAN is oxidized, and voltammograms are recorded by scanning the potential in a positive direction. Calibration plots were found to be linear in the range 2 × 10–8 mol/L to 8 × 10–7 mol/L. The detection limit was 5 × 10–10 mol/L, and the coefficient of variation, determined on one single electrode at a concentration of 5 × 10–7 mol/L, was calculated to be 3.2% (n = 5). Using this new kind of modified electrode, trace levels of Cd(II) in water samples were determined; the average recovery was calculated to be 98.78%. Received: 17 August 2000 / Revised: 19 December 2000 / Accepted: 27 December 2000  相似文献   

3.
An 1-(pyridylazo)-2-naphthol modified glassy carbon electrode has been investigated as sensor for the measurement of trace levels of Cd2+. Cd2+ is deposited on the surface of a PAN modified glassy carbon electrode at -1.10 V (vs. SCE) via forming Cd2+-PAN and subsequent reduction at the electrode. In the following step, Cd-PAN is oxidized, and voltammograms are recorded by scanning the potential in a positive direction. Calibration plots were found to be linear in the range 2 x 10(-8) mol/L to 8 x 10(-7) mol/L. The detection limit was 5 x 10(-10) mol/L, and the coefficient of variation, determined on one single electrode at a concentration of 5 x 10(-7) mol/L, was calculated to be 3.2% (n = 5). Using this new kind of modified electrode, trace levels of Cd(II) in water samples were determined; the average recovery was calculated to be 98.78%.  相似文献   

4.
Stadiober M  Kalcher K  Raber G  Neuhold C 《Talanta》1996,43(11):1915-1924
A method is described for the voltammetric determination of titanium(IV) using a carbon paste electrode modified in situ with cetyltrimethylammonium bromide. The cationic micellar surfactant adsorbs onto the electrode particularly at negative potentials, simultaneously preconcentrating titanium(IV) as the oxalate complex with reduction to titanium(III). Anodic stripping voltammetry exploiting reoxidation can be used for the determination of trace levels of titanium(IV). Linearity between current and concentration exists between 5 and 160 mug l(-1) Ti(IV) (preconcentration time 2 min). The limit of detection (calculated as 3sigma) is 0.1 mug l(-1), with a preconcentration time of 10 min.  相似文献   

5.
Preparation and application of gold 2-mercaptosuccinic acid self-assembled monolayer (Au-MSA SAM) electrode for determination of iron(III) in the presence of iron(II) is described by cyclic voltammetry, electrochemical impedance spectroscopy, and Osteryoung square wave voltammetry. The square wave voltammograms showed a sharp peak around positive potentials +0.250 V that was used for construction of the calibration curve. Parameters influencing the method were optimized. A linear range calibration curve from 1.0 × 10−10 to 6.0 × 10−9 M iron(III) with a detection limit of 3.0 × 10−11 M and relative standard deviation (R.S.D.) of 6.5% for n = 8 at 1.0 × 10−9 M iron(III) was observed in the best conditions. Possible interferences from the coexisting ions were also investigated. The results demonstrated that sensor could be used for determination of iron(III) in the presence of various ions. The validity of the method and applicability of the sensor were successfully tested by determining of iron(III) in natural waters (tap and mineral waters) and in a pharmaceutical sample (Venofer® ampoule) without interference from sample matrix. The experimental data are presented and discussed from which the new sensor is characterized.  相似文献   

6.
The development of a highly sensitive amperometric sensor for nitrite using a glassy carbon electrode modified with alternated layers of iron(III) tetra-(N-methyl-4-pyridyl)-porphyrin (FeT4MPyP) and cobalt(II) tetrasulfonated phthalocyanine (CoTSPc) is described. The modified electrode showed an excellent catalytic activity and stability for the nitrite oxidation decreasing the peak potentials about 200 mV toward less positive values and presenting much higher peak currents than those obtained on the bare GC electrode. A linear response range of 0.2-8.6 μmol l−1, with a sensitivity of 0.37 μA l μmol−1 and detection limit of 0.04 μmol l−1 were obtained with this sensor. The repeatability of the proposed sensor, evaluated in term of relative standard deviation, was verified to be 1.4% for 10 measurements of 0.2 μmol l−1 nitrite solution. Interference caused by common ions has been investigated in simulated mixtures containing high concentration level of interfering ions and the sensor was found to be tolerant against these ions. The developed sensor was applied for the nitrite determination in water samples and the results were in agreement with those obtained by a comparative method described in the literature. The average recovery for these samples was 100.1 (±0.7)%.  相似文献   

7.
The preparation and electrochemical characterization of a carbon paste electrode modified with copper(II) hexacyanoferrate(III) (CuHCF) as well as its behavior as electrocatalyst toward the oxidation of N-acetylcysteine were investigated. The electrochemical behavior of the modified electrode and the electrooxidation of N-acetylcysteine were explored using sweep linear voltammetry. The best voltammetric response was observed for a paste composition of 20% (w/w) copper(II) hexacyanoferrate(III) complex, acetate buffer solution at pH of 6.0 as the electrolyte and scan rate of 10 mV s− 1. A linear voltammetric response for N-acetylcysteine was obtained in the concentration range from 1.2 × 10− 4 to 8.3 × 10− 4 mol L− 1, with a detection limit of 6.3 × 10− 5 mol L− 1. The proposed electrode is useful for the quality control and routine analysis of N-acetylcysteine in pharmaceutical formulations.  相似文献   

8.
Lei  Yan  Yang  Fan  Li  Yu-Tao  Tang  Lina  Chen  Keli  Zhang  Guo-Jun 《Mikrochimica acta》2017,184(7):2299-2305
Microchimica Acta - The authors describe the construction of a renewable electrochemical method for determination of honokiol in complex traditional Chinese herbs. A nanocomposite consisting of...  相似文献   

9.
Nanocomposites consisting of gold nanoclusters and graphene oxide (AuNC/GO) were prepared and investigated with respect to the design of new sensors for hydrogen peroxide (H2O2). The AuNC/GO hybrid nanomaterials were deposited on a gold electrode by the layer-by-layer assembly method, where they showed enhanced photoelectrical and sensing properties. The presence of graphene oxide improves the photoinduced electron separation efficiency of the AuNCs, as well as the catalytic effect of AuNCs on the electroreduction of H2O2. Compared to an electrode modified with AuNCs only, the new electrodes display a more than ten-fold enhanced photocurrent at a working voltage of -500 mV (vs. Ag/AgCl), higher sensitivity for H2O2 (25.76 nA?mM?1), lower LOD (2 μM) and extended linear range (from 30 μM to 5 mM). The sensors were applied to the determination of H2O2 extracted from living human umbilical vein endothelial cells stimulated by angiotensin II.
Graphical abstract Graphene oxide (GO) not only improves the photoinduced charge separation efficiency of fluorescent gold nanoclusters (AuNCs) based photoelectrochemical sensors, but also enhances the catalytic property of AuNCs on the detection of hydrogen peroxide (H2O2).
  相似文献   

10.
We have developed a method for the determination of the three catecholamines (CAs) epinephrine (EP), norepinephrine (NE), and dopamine (DA) at sub-nanomolar levels. It is found that the luminescence of the complexes formed between the CAs and Tb3+ ion is strongly enhanced in the presence of colloidal silver nanoparticles (Ag-NPs). The Ag-NPs cause a transfer of the resonance energy to the fluorophores through the interaction of the excited-state fluorophores and surface plasmon electrons in the Ag-NPs. Under the optimized condition, the luminescence intensity of the system is linearly related to the concentration of the CAs. Linearity is observed in the concentration ranges of 2.5–110?nM for EP, 2.8–240?nM for NE, and 2.4–140?nM for DA, with limits of detection as low as 0.25?nM, 0.64?nM and 0.42?nM, respectively. Relative standard deviations were determined at 10?nM concentrations (for n?=?10) and gave values of 0.98%, 1.05% and 0.96% for EP, NE and DA, respectively. Catecholamines were successfully determined in pharmaceutical preparations, and successful recovery experiments are demonstrated for urine and serum samples.
Figure
Schematic presentation of Ag NP-enhanced luminescence of Tb3+-CA complex. (A) Luminescence intensity at 545 nm of Tb3+-EP complex is lower than that of (B) Tb3+-EP-Ag NP system when both are excited at the wavelength of 279 nm.  相似文献   

11.
聚L-赖氨酸修饰电极对去甲肾上腺素的电催化氧化   总被引:7,自引:2,他引:7  
研究了L 赖氨酸在玻碳电极上电化学聚合的条件及修饰电极的电化学特性,发现该聚合膜对去甲肾上腺素(NE)的电氧化有显著的催化作用,在磷酸盐缓冲溶液(pH7)中,恒电位-0.2V富集2.0min后,用方波溶出伏安法对NE进行了测定,线性范围为1.0×10-8~5.0×10-4mol L,检出限(信噪比=3)为8 2×10-10mol L。对1.0×10-7mol LNE平行测定8次相对标准偏差为2 4%。  相似文献   

12.
A new chemically modified electrode is constructed based on iron(III) doped zeolite modified carbon paste electrode (Fe(3+)Y/ZCME). The electrode was evaluated as a sensor for sub-micromolar determination of tryptophan (Trp), uric acid (UA) and ascorbic acid (AA) in aqueous solutions. The measurements were carried out by application of the differential pulse voltammetry (DPV) method in phosphate buffer solution with pH 3.5. Iron(III) loaded in zeolite can increase anodic peak currents by adsorption of Trp, UA and AA on electrode surface The analytical performance was evaluated with respect to the carbon paste composition, pH of solution, accumulation time and accumulation potential. The prepared electrode shows voltammetric responses with high sensitivity and selectivity for Trp, UA and AA in optimal conditions, which makes it very suitable for simultaneous determination of these compounds. The linear calibration range for AA in the presence of 50muM UA and 50muM Trp was 0.6muM to 100muM, with a correlation coefficient of 0.9992, and a detection limit of 0.21muM (S/N=3). A linear relationship was found for UA in the range of 0.3-700muM containing 10muM AA and 50muM Trp, with a correlation coefficient of 0.9990 and a detection limit of 0.08muM. The linear calibration range for Trp in the presence of 10muM AA and 50muM UA was 0.2-150muM, with a correlation coefficient of 0.9996, and a detection limit of 0.06muM. The proposed method was successfully applied for determination Trp, UA and AA in biological systems and pharmaceutical samples.  相似文献   

13.
We are presenting a strategy for the fabrication of disposable screen-printed electrodes modified with mercury nano-droplets and capable of sensing heavy metal ions. They were prepared by coating electrodes with a mixture of multi-walled carbon nanotubes and chitosan, this followed by adsorption of mercury. The resulting sensor was characterized by cyclic voltammetry and impedance spectroscopy. Also the effects caused by adsorption of mercury were investigated. It is shown that square wave anodic stripping voltammetry enables simultaneous determination of cadmium(II), lead(II) and copper(II), for which detection limits of 12, 23 and 20 nM, respectively, are found. Relative standard deviations for ten determinations at 0.6 µM concentrations of these ions are in the range of 3.0 to 5.7%. The applicability was tested by analyzing river water and showed recoveries between 94.1 and 104.6%, thus demonstrating its utility for in-field monitoring of these heavy metal ions.  相似文献   

14.
We have synthesized cadmium(II) ion-imprinted polymers (IIP) and non-imprinted polymers (NIP) using 1-(2-pyridylazo)-2-naphthol as a ligand. The materials were used to prepare a carbon paste electrode for the determination of Cd(II). Polymerization was performed with (a) methacrylic acid as a functional monomer, (b) ethyleneglycol dimethacrylate as the crosslinking monomer, and (c) 2,2′-azobis(isobutyronitrile) as the initiator. Imprinted cadmium ion was removed from the polymeric matrix using nitric acid. The measurements were carried out in an closed circuit after accumulation at ?1.2?V, this followed by electrolysis of the accumulated Cd(II) by voltammetric scanning from ?1.0 to ?0.6?V. The parameters governing the response of the electrode were studied. Under optimized conditions, the response of the electrode is linear in the range from 2.0 to 200?ng?mL?1. The detection limit is 0.31?ng?mL?1. The relative standard deviations are ±3.4 and ±2.1?% for 7 successive determinations of 20.0 and 50.0?ng?mL-1 of Cd(II), respectively. The method was applied to the determination of cadmium (II) in water and food samples.
Figure
a) Preparation of modified carbon paste b) Preparation of Cd(II)-IIP-MCPE c) Differential pulse anodic stripping voltammetry d) Voltammogram  相似文献   

15.
Kester MD  Shiundu PM  Wade AP 《Talanta》1992,39(3):299-312
A manual colorimetric method for determination of sulfide has been adapted to flow injection, systematically optimized, and more fully characterized. Its intended application is for measurement of sodium sulfide reagent strength in pulp process streams, and sulfide contamination in effluent from Kraft pulp mills. In the flow-injection method developed, a sample solution containing sulfide is reacted with a mixture of iron(III) and nitrilotriacetic acid under ammoniacal conditions. The absorbance of the intensely-colored green product of this reaction is measured at 636 nm. Excess sulfite is present as a color stabilizer. A linear dynamic range of 20-100 ppm sulfide is readily achieved; the relative standard deviation is less than 1.2% (n = 10) throughout this range, and 0.37% (n = 10) midrange at 60 ppm. The usable dynamic range is 8-250 ppm sulfide. Long-term stability of the method is ensured by periodically performing an automatic cleaning cycle using a hydrochloric acid wash solution. This prevents tube discoloration and removes any precipitates which are formed under strongly alkaline conditions. The sample throuhput rate is at least 30/hr, given alternate acid wash cycles.  相似文献   

16.
The electroanalytical determination of isoprenaline in pharmaceutical preparations of a homemade carbon paste electrode modified with copper(II) hexacyanoferrate(III) (CuHCF) was studied by cyclic voltammetry. Several parameters were studied for the optimization of the sensor such as electrode composition, electrolytic solution, pH effect, potential scan rate and interferences in potential. The optimum conditions were found in an electrode composition (in mass) of 15% CuHCF, 60% graphite and 25% mineral oil in 0.5 mol l−1 acetate buffer solution at pH 6.0. The analytical curve for isoprenaline was linear in the concentration range from 1.96×10−4 to 1.07×10−3 mol l−1 with a detection limit of 8.0×10−5 mol l−1. The relative standard deviation was 1.2% for 1.96×10−4 mol l−1 isoprenaline solution (n=5). The procedure was successfully applied to the determination of isoprenaline in pharmaceutical preparations; the CuHCF modified carbon paste electrode gave comparable results to those results obtained using a UV spectrophotometric method.  相似文献   

17.
18.
Revin SB  John SA 《The Analyst》2012,137(1):209-215
We report the simultaneous determination of two neurotransmitters, norepinephrine (NEP) and serotonin (5-HT), at physiological pH using the electropolymerized film of 3-amino-5-mercapto-1,2,4-triazole modified glassy carbon (p-AMTa) electrode. A bare glassy carbon (GC) electrode fails to resolve the voltammetric signals of NEP and 5-HT due to the surface fouling caused by the oxidized products of them. However, the p-AMTa electrode not only separates the voltammetric signals of NEP and 5-HT with a potential difference of 150 mV between NEP and 5-HT but also shows higher oxidation currents for them. The simultaneous determination of NEP and 5-HT was successfully achieved at p-AMTa electrode using differential pulse voltammetry method. The amperometric current response increased linearly with increasing NEP and 5-HT concentration in the range of 1.0 × 10(-8) to 1.0 × 10(-4) M and 1.0 × 10(-8) to 5.0 × 10(-5) M, respectively, and the detection limit was found to be 1.65 × 10(-11) for NEP and 1.32 × 10(-11) M for 5-HT (S/N = 3). The p-AMTa electrode shows better recovery results for spiked NEP and 5-HT in human blood plasma samples.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号