首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Rocking‐chair based lithium‐ion batteries (LIBs) have extensively applied to consumer electronics and electric vehicles (EVs) for solving the present worldwide issues of fossil fuel exhaustion and environmental pollution. However, due to the growing unprecedented demand of LIBs for commercialization in EVs and grid‐scale energy storage stations, and a shortage of lithium and cobalt, the increasing cost gives impetus to exploit low‐cost rechargeable battery systems. Dual‐ion batteries (DIBs), in which both cations and anions are involved in the electrochemical redox reaction, are one of the most promising candidates to meet the low‐cost requirements of commercial applications, because of their high working voltage, excellent safety, and environmental friendliness compared to conventional rocking‐chair based LIBs. However, DIB technologies are only at the stage of fundamental research and considerable effort is required to improve the energy density and cycle life further. We review the development history and current situation, and discuss the reaction kinetics involved in DIBs, including various anionic intercalation mechanism of cathodes, and the reactions at the anodes including intercalation and alloying to explore promising strategies towards low‐cost DIBs with high performance.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
Lithium‐ion batteries (LIBs) have become ubiquitous power sources for small electronic devices, electric vehicles, and stationary energy storage systems. Despite the success of LIBs which is acknowledged by their increasing commodity market, the historical evolution of the chemistry behind the LIB technologies is laden with obstacles and yet to be unambiguously documented. This Viewpoint outlines chronologically the most essential findings related to today's LIBs, including commercial electrode and electrolyte materials, but furthermore also depicts how the today popular and widely emerging solid‐state batteries were instrumental at very early stages in the development of LIBs.  相似文献   

14.
Alternatives of commercial lithium‐ion batteries (LIBs) have drawn huge attention due to the large demand of energy storage systems and the lack of resources for traditional LIBs. Promising candidates include but are not limited to Li‐S batteries, organic batteries and flow batteries. However, the dissolution of active materials and the consequent shuttle effect, as one of the main challenges in these candidates, always leads to significant capacity loss and poor cycling life. The rising two‐dimensional (2D) materials, with well‐defined structures and attractive physical and chemical properties, provide a new vision to solve these problems via suppressing the shuttle of the dissolved active materials. Herein, we present a minireview on the advances and perspectives of 2D materials as ionic sieves for inhibiting the shuttle effect in batteries.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号