首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Spatial distance is an important factor in controlling the functional interactions between molecular units in a conjugate; therefore, the bridging unit has been closely examined. Here, we examined the effect of the flexibility of bridging alkyl chains on the proximity of stacked porphyrin and phthalocyanine conjugated with a fourfold rotaxane linkage. We found that closely stacking two π systems requires bridging alkyl chains above a certain length, and the shorter bridges hinder stacking because of their lower flexibility. The stacking distance between porphyrin and phthalocyanine in the conjugate with decyl (C10) chains was estimated to be 4.03 Å and showed a unique physical character arising from short-distance interactions. The longer alkyl chains minimized steric restriction inside the fourfold rotaxane and allowed efficient communication between the porphyrin and phthalocyanine units. This is due to the flexibility of the side chains.  相似文献   

2.
具有不同取代链长的卟啉衍生物LB膜的结构研究   总被引:3,自引:0,他引:3  
本文研究了三种羧酸取代的四苯基卟啉衍生物在空气/Cd^2^+水溶液界面上所形成的单层膜及LB膜。这三种卟啉衍生物中, 一种没有脂链, 另外两种具有不同长度的脂链。由π-A等温线得到的平均表观分子面积相差很大。紫外-可见光谱表明, LB膜中卟啉的Soret吸收带相对于溶液的吸收均红移, 但红移程度不同。LB膜的偏振紫外-可见光谱表明, LB膜中三种卟啉衍生物的卟啉环具有基本一致的取向。运用亚相降低法得到了三种卟啉衍生物单层LB膜, 其紫外-可见光谱与用垂直提拉法得到的LB膜的紫外-可见光谱具有一致的特征。这些结果表明: 卟啉衍生物有无取代链及取代链长的不同对平均表观分子面积的大小和膜中环间的距离有影响, 但对环的取向没有影响。环的取向由环本身及环上的亲水取代基来确定。气/液界面上三种卟啉衍生物的单层膜中环也具有一致的取向, 且与LB膜中环的取向相差不大。提拉不会对膜中环的取向及膜的结构造成大的改变。  相似文献   

3.
STM实验发现长链烷烃分子能够改善多种有机分子的吸附性能,本文利用CVFF力场对长链烷烃与石墨吸附体系进行了分子力学模拟,用半经验ZINDO/1,AM1方法对烷基取代酞菁和卟啉的STM形貌反差机制进行了研究。理论计算表明,长链烷烃分子与基底的吸附作用增强了分子的吸附稳定性,而烷烃分子间的二维结晶作用使取代酞菁和卟啉分子形成密排的二维有序结构。前线轨道电子密度和STM实验结果比较证明,分子核部分的电子性质和烷基部分的几何结构决定了取代酞菁和卟啉分子的STM形貌反差。  相似文献   

4.
Bis(zinc porphyrin) scaffolds bearing C8 or C18 alkyl chains and imidazole end groups self‐assembled in a head‐to‐tail fashion into multi‐porphyrin assemblies on both HOPG and mica. Due to weaker molecule surface‐interactions, longer arrays formed on mica than on HOPG. In both cases, it was essential first to generate monomers that were drop casted on the surface, then to allow time for the bis(zinc porphyrins) to assemble. Although thicker fibrous assemblies were observed with the C8 alkyl substituents than with the longer chains, noncovalent assemblies up to 1 μm long were observed for each molecule. These investigations provide a reproducible, noncovalent method to grow porphyrin arrays that may be of interest in molecular electronics for charge transport.  相似文献   

5.
The effects of ruffling on the axial ligation properties of a series of nickel(II) tetra(alkyl)porphyrins have been investigated with UV-visible absorption spectroscopy, resonance Raman spectroscopy, X-ray crystallography, classical molecular mechanics calculations, and normal-coordinate structural decomposition analysis. For the modestly nonplanar porphyrins, porphyrin ruffling is found to cause a decrease in binding affinity for pyrrolidine and piperidine, mainly caused by a decrease in the binding constant for addition of the first axial ligand; ligand binding is completely inhibited for the more nonplanar porphyrins. The lowered affinity, resulting from the large energies required to expand the core and flatten the porphyrin to accommodate the large high-spin nickel(II) ion, has implications for nickel porphyrin-based molecular devices and the function of heme proteins and methyl-coenzyme M reductase.  相似文献   

6.
The synthesis, structure and anion‐recognition properties of a new strapped‐porphyrin‐containing [2]catenane anion host system are described. The assembly of the catenane is directed by discrete chloride anion templation acting in synergy with secondary aromatic donor–acceptor and coordinative pyridine–zinc interactions. The [2]catenane incorporates a three‐dimensional, hydrogen‐bond‐donating anion‐binding pocket; solid‐state structural analysis of the catenane?chloride complex reveals that the chloride anion is encapsulated within the catenane’s interlocked binding cavity through six convergent CH????Cl and NH???Cl hydrogen‐bonding interactions and solution‐phase 1H NMR titration experiments demonstrate that this complementary hydrogen‐bonding arrangement facilitates the selective recognition of chloride over larger halide anions in DMSO solution.  相似文献   

7.
Aggregation behavior of water soluble porphyrins, 5-(1-(4-carboxybutyl) pyridinum-4-yl) 10,15,20-tris (1-methylpyridinium-4-yl) porphyrin (5-CBPyP) in the presence of various concentrations of calf thymus DNA (ct-DNA) and sodium chloride were studied in comparison with meso-tetrakis (4-N-methyl pyridinum) porphyrin (TMPyP), by optical absorption, fluorescence and resonance light scattering (RLS) spectroscopies. Both porphyrins obey Beer’s law in extended range of concentration. Optical absorption and RLS measurements demonstrated nonaggregation for both porphyrins under increasing concentration of ct-DNA and NaCl. However, in comparison, 5-CBPyP had less tendency for aggregation that may be taken as an advantage for its probable application in photodynamic therapy of cancer. The trend of changes in absorption spectra of both porphyrins in the presence of ct-DNA indicates the homogeneous intercalation binding mode. The values of (2.81 ± 0.28) × 106 M?1 and (0.95 ± 0.09) × 106 M?1 were obtained for apparent binding constant of TMPyP and 5-CBPyP from analysis of optical absorption data, respectively. This indicates the less affinity of 5-CBPyP to ct-DNA in comparison with TMPyP. The binding of both porphyrins to ct-DNA quenches fluorescence emission of Ethidium bromide (EB) that is bound to ct-DNA. The quenching process obeys linear Stern-Volmer relationship indicating the displacement of EB from its binding sites by these porphyrins. The results of this technique also represent the intercalation mode of binding for both porphyrins and higher binding affinity of TMPyP compared with 5-CBPyP.  相似文献   

8.
We describe the synthesis of a series of interlocked structures from porphyrin–glycoluril cage compounds and bis(olefin)‐terminated viologens by an olefin‐metathesis protocol. The length of the chain connecting the olefin substituents with the viologen has a marked effect on the products of the ring‐closure reaction. Long chains give [2]‐ and [3]catenane structures, whereas short chains give a mixture of [3]‐, [4]‐, and [5]catenanes. For comparison several [2]rotaxane compounds were prepared. The interlocked catenane and rotaxane structures display switching behavior, which can be controlled by the addition of acid and base. The kinetic and thermodynamic parameters of the switching processes have been determined by NMR spectroscopy.  相似文献   

9.
New amphiphilic and spin-labile Mn(III) complexes based on dianionic N(4)O(2)-hexadentate sal(2)trien or sal(2)bapen ligands, which contain OC(6)H(13), OC(12)H(25), or OC(18)H(37) alkoxy substituents at different positions of the salicylidene unit were prepared (H(2)sal(2)trien = N,N'-bis(salicylidene)-1,4,7,10-tetraazadecane, H(2)sal(2)bapen = N,N'-bis(salicylidene)-1,5,8,12-tetraazadodecane). According to electrochemical measurements, these complexes undergo two (quasi)reversible redox processes. Temperature-dependent magnetic measurements revealed a high-spin configuration for all sal(2)trien complexes (S = 2) and gradual spin crossover for sal(2)bapen complexes from high to low spin (S = 1). The chain length strongly influences the spin crossover, as C(18)-functionalization stabilizes the low spin state at much higher temperatures than shorter alkyl chains. Moreover, long alkyl chains allow for spontaneous self-assembly of the molecules, which was investigated in single crystals and in Langmuir-films at the air-water interface. Long alkyl chains (C(12) or C(18)) as well as a mutual syn-orientation of these molecular recognition sites were required for the Langmuir monolayers to be stable.  相似文献   

10.
Self‐assembled porphyrins via noncovalent bonding have attracted wide‐ranging researchers in material science. We reported herein the synthesis of the tetraphenyl porphyrin derivatives bearing uracyl groups as acceptor–donor–acceptor (ADA) type hydrogen bonding units, through the condensation of 5,10‐ or 5,15‐bis (3‐amino‐4‐ethylhexylphenyl) porphyrin derivatives with 6‐carboxyuracyl derivatives. When two porphyrins having uracyl groups at the different substituted positions were respectively mixed with a melamine derivative in benzene, 1H NMR spectra showed that the 5,15 substituted uracyl porphyrin formed a hydrogen‐bonded suprastructure with the melamine derivative as a complementary molecule to the uracyl moiety, although the other 5,10‐substituted uracylporphyrin could not form such a structure. The SEM observation indicated that the mixture with the 5,15‐substituted uracyl porphyrin and the melamine with long alkyl chains formed a sheet‐like structure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
The storage of multiple bits of information at the molecular level requires molecules with a large number of distinct oxidation states. Lanthanide triple-decker sandwich molecules employing porphyrins and phthalocyanines afford four cationic states and are very attractive for molecular information storage applications. Five triple-decker building blocks have been prepared of the type (phthalocyanine)Eu(phthalocyanine)Eu(porphyrin), each bearing one iodo, one ethyne, or one iodo and one ethyne group attached to the porphyrin unit. Two triple-decker building blocks with different oxidation potentials were derivatized with an S-acetylthiophenyl unit for attachment to an electroactive surface. To explore the preparation of arrays comprised of triple deckers, which may lead to the storage of a larger number of bits, two types of dyads of triple deckers were prepared. An ethyne-linked dyad of triple deckers bearing one S-acetylthiophenyl unit was prepared via repetitive Sonogashira couplings, and a butadiyne-linked dyad was prepared via a modified Glaser coupling. The triple deckers were characterized by absorption spectroscopy, laser-desorption mass spectrometry, and (1)H NMR spectroscopy. The thiol-derivatized triple deckers form self-assembled monolayers (SAMs) on gold via in situ cleavage of the thiol protecting group. The SAM of each array is electrochemically robust and exhibits three well-resolved, reversible oxidation waves. These electrochemical characteristics indicate that these types of molecules are well suited for storing multiple bits of information.  相似文献   

12.
Synthesis and characterization of a novel, multifunctional, solvent‐free room‐temperature liquid based on alkylated double‐decker lutetium(III) phthalocyanine (Pc2Lu) are described. Lowering of the melting point and viscosity of intrinsically solid Pc2Lu compounds has been achieved through the attachment of flexible, bulky, and long branched‐alkyl chains, that is, thio‐2‐octyldodecyl, to the periphery of the Pc2Lu unit. The embedded Pc2Lu unit maintains its inherent molecular functions, such as spin‐active nature and electrochromic behavior in the liquid state. Comparison of the properties with a solid‐like Pc2Lu derivative, functionalized with shorter alkyl chains, that is, thio‐2‐ethylhexyl, underlines the importance of the hampering effect on the π–π interactions of neighboring Pc2Lu molecules by bulkier and longer branched‐alkyl chains. This study could possibly pave the way for novel multifunctional liquids whose spin‐activities are associated with their rheological or optoelectronic properties.  相似文献   

13.
In this paper, we reveal that the free-base and zinc strapped porphyrins possessing long alkyl chains, C 24OPP-HQ and Zn(C 24OPP-HQ), respectively, can be arranged on surfaces. We used scanning tunneling microscopy (STM) to observe alkyl-chain-assisted self-assembled monolayers (SAMs) of these strapped porphyrins at the solid-liquid interface. STM images revealed that the strapped benzene moiety was detectable on the porphyrin core: that is, the strapped porphyrins could be differentiated from nonstrapped analogues. We compared the population of the nonstrapped porphyrin (C 24OPP) and either of the strapped porphyrins C 24OPP-HQ or Zn(C 24OPP-HQ) in the mixed SAMs. We then confirmed that Zn(C 24OPP-HQ) is more favorably incorporated in the mixed SAMs than C 24OPP-HQ. From (1)H NMR spectroscopic and X-ray crystallographic analyses, we concluded that the factors increasing the population of Zn(C 24OPP-HQ) in the mixed SAMs are the enhanced rigidity of the porphyrin core by the zinc coordination and the flat structure of the porphyrin moiety in the saddle conformation. This study demonstrates that strapped porphyrins possessing long alkyl chains are available to arrange the functional modules on the surface via chemical modification on the strapped moiety.  相似文献   

14.
《Supramolecular Science》1997,4(3-4):461-464
Copper (II) phthalocyanine derivatives with four alkyl chains were synthesized. Langmuir-Blodgett (LB) films of the following two compounds were deposited: Cu(II)[tetrakis(3,3-dimethyl-butoxycarbonyl)] phthalocyanine and Cu(II)[tetrakis(n-butoxycarbonyl)] phthalocyanine. Moreover, LB films from a 1:1 mixture of the two compounds were prepared. All isotherms and optical data were consistent with the molecules being stacked nearly edge-on to the substrate, with the molecular faces having a preferred orientation perpendicular to the dipping direction. The dynamic response characteristics of the electrical conductance of the LB films to different NO2 concentrations in dry air are described. A relationship has been observed between the anisotropic molecular orientation and the electrical conductivity parallel to the substrate.  相似文献   

15.
Abstract

We report the encapsulation of a homologous series of N-alkyl-N,N-dimethylamine N-oxides in a molecular container with bis[2]catenane topology. N-oxides with short alkyl chains are co-encapsulated with one solvent molecule. Elongation of the alkyl chain from R = methyl to pentyl produced the progressive compression of the guest. The hexyl N-oxide reduces its compression by being singly encapsulated. Longer N-oxides (R = octyl to decyl) had to fold to adapt to the capsule’s dimensions and also experience a progressive compression. The mechanically interlocked nature of the container and the polar functionalisation of its cavity are responsible for the assembly of encapsulation complexes in solution displaying high packing coefficients (0.65–0.70). The high energy conformations adopted by the alkyl chains of the bound N-oxides are deduced from NMR experiments and molecular modelling studies.  相似文献   

16.
We report the synthesis of three donor–acceptor azido-functionalised catenanes, wherein the asymmetric positioning of the azide group on one or two of the ring components renders its resident macrocycle constitutionally asymmetric, and so it acts as an oriented ring. As a consequence, the analyses of (i) a monoazido[2]catenane, (ii) a monoazido[3]catenane and (iii) a bisazido[3]catenane, which exists as a mixture of two conditional topological isomers, are significantly complicated. Accordingly, characterisation of the catenanes, which was achieved by a combination of dynamic 1H NMR spectroscopy, mass spectrometry and single crystal X-ray diffraction, is an arduous task. We expect that the difficulties in analysing these mechanically interlocked molecules will be encountered more frequently as chemists prepare entities with increasingly complex topologies.  相似文献   

17.
Catenanes with multistate switchable properties are promising components for next-generation molecular machines and supramolecular materials. Herein, we report a ligand-controlled switching method, a novel method for the multistate switching of catenanes controlled by complexation with added amine ligands. To verify this method, a [3]catenane comprising cyclic porphyrin dimers with a rigid π-system has been synthesized. Owing to the rigidity, the relative positions among the cyclic components of the [3]catenane can be precisely controlled by complexation with various amine ligands. Moreover, ligand-controlled multistate switching affects the optical properties of the [3]catenanes: the emission intensity can be tuned by modulating the sizes and coordination numbers of integrated amine ligands. This work shows the utility of using organic ligands for the structural switching of catenanes, and will contribute to the further development of multistate switchable mechanically interlocked molecules.  相似文献   

18.
Two novel homologous series of phthalocyanines were prepared from 2,2-dialkylindane and 2,2-dialkyl-1,3-benzodioxole precursors. It was anticipated that attaching alkyl chains to five-membered rings, fused to the peripheral sites of the phthalocyanine ring, would result in the adoption of an out-of-plane configuration and thereby discourage cofacial aggregation, to provide an analogy with picket-fence porphyrins. This strategy proved partially successful. Some members of the series of phthalocyanines derived from 2,2-dialkyl-1,3-benzodioxoles, in which the alkyl chains are linked to the phthalocyanine via a cyclic ketal, form spin-coated thin films in which the phthalocyanine cores are perfectly isolated. This behaviour is associated with the formation of a disordered crystal that appears as a mesophase in the thermal profile of these materials. However, the phthalocyanines derived from 2,2-dialkylindanes display a columnar mesophase over a wide temperature range, with some liquid crystalline derivatives at ambient temperature. A single-crystal X-ray diffraction structure of the octahexyl derivative of this series shows how the columnar assembly accommodates the out-of-plane alkyl chains by tilting the macrocyclic plane of the phthalocyanine components with respect to the axis of the column. This study helps to emphasise the importance of both the steric and electronic effects of substituents on the packing behaviour of phthalocyanines in the condensed phase, and especially the role of electron-donating oxygen atoms directly attached to the ring.  相似文献   

19.
Mechanically interlocked structures are fascinating synthetic targets and the topological complexity achieved through catenation offers numerous possibilities for the construction of new molecules with exciting properties. In the structural space of catenated organic cage molecules, only few examples have been realized so far, and control over the catenation process in solution is still barely achieved. Herein, we describe the formation of a quadruply interlocked catenane of giant chiral [8+12] salicylimine cubes. The formation could be controlled by the choice of solvent used in the reaction. The interlocked structure was unambiguously characterized by single crystal X-ray diffraction and weak hydrogen bonding was identified as a central driving force for the catenation. Furthermore, scrambling experiments using partially deuterated cages were performed, revealing that the catenane formation occurs through mechanical interlocking of preformed single cages.  相似文献   

20.
The total syntheses of four PEG-functionalized porphyrins, containing one to four low molecular weight PEG chains linked via amide bonds to the para-phenyl positions of meso-tetraphenylporphyrin, are reported. The hydrophobic character of the PEG-porphyrins decreases with the number of PEG chains linked to the porphyrin ring, while their tendency for aggregation in buffered aqueous solution increases. The porphyrins containing one or two PEG chains accumulated within human HEp2 cells to a much higher extent than those having three or four PEGs at the macrocycle periphery. All PEG-porphyrins were found to be non-toxic in the dark, and only those containing one or two PEG chains were phototoxic (IC(50)=2 microM at 1J/cm(2) light dose). The preferential sites of subcellular localization of the porphyrins containing one or two PEG chains were found to be the mitochondria and endoplasmic reticulum (ER), while those containing three or four PEG chains localize preferentially in the lysosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号