首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, robust and specific liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed and validated to determine the concentration of corticosterone (Cort) which is usually regarded as a stress biomarker in mouse serum. Since Cort is an endogenous hormone, a ‘surrogate analyte’ strategy was adopted using the stable isotope‐deuterated corticosterone as a surrogate of the authentic analyte to generate the calibration curve. With telmisartan as the internal standard, the analytes were extracted with methanol, ethanol and acetone (1:1:1, v/v/v) and separated on a XTerra C18 (2.1 × 50 mm, 3.5 µm) column using a mobile phase consisting of 0.2% formic acid in water–methanol (30:70, v/v). Detection was performed in multiple reaction monitoring mode with an electrospray ionization source operated in positive ion mode. The standard curves were linear (r2 > 0.999) over the dynamic range of 8.60–430 ng/mL, with a lower limit of quantification of 8.60 ng/mL. The intra‐ and inter‐assay precisions were less than 15.0% of the relative standard deviation. This method was further used for analysis of serum samples from C57B/L tumor‐bearing mice before and after the treatment of fluoxetine. Validation of the assay and its application to the analysis demonstrated that the method was applicable to determine meaningful changes in Cort concentrations in serum samples of the tumor‐bearing mice for the stress status evaluation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The disposition of the cannabimimetic naphthalen‐1‐yl‐(1‐pentylindol‐3‐yl)methanone (JWH‐018) in mice following inhalation of the smoke of the herbal incense product (HIP) ‘Buzz’ is presented. A high‐pressure liquid chromatography with electrospray ionization triple quadrupole mass spectrometer (HPLC/MS/MS) method was validated for the analysis of JWH‐018 in the specimens using deuterated Δ9‐tetrahydrocannabinol (d3‐THC) as the internal standard. JWH‐018 was isolated by cold acetonitrile liquid–liquid extraction. Chromatographic separation was performed on a Zorbaz eclipse XDB‐C18 column. The assay was linear from 1 to 1000 ng/mL. Six C57BL6 mice were sacrificed 20 min after exposure to the smoke of 200 mg ‘Buzz’ containing 5.4% JWH‐018. Specimen concentrations of JWH‐018 were: blood, 54–166 ng/mL (mean 82 ± 42 ng/mL); brain, 316–708 ng/g (mean 510 ± 166 ng/g); and liver, 1370–3220 ng/mL (mean 1990 ± 752 ng/mL). The mean blood to brain ratio for JWH‐018 was 6.8 and ranged from 4.2 to 10.9. After exposure, the responses of the mice were consistent with cannabinoid receptor type 1 activity: body temperatures dropped 7.3 ± 1.1 °C, and catalepsy, hyperreflexia, straub tail and ptosis were observed. The brain concentrations and physiological responses are consistent with the hypothesis that the behavioral effects of ‘Buzz’ are attributable to JWH‐018. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Ambiguous alteration patterns of 5‐methylcytosine (5mC) and 5‐hydroxymethylcytosine (5hmC) involved in Alzheimer's disease (AD) obstructed the mechanism investigation of this neurological disorder from epigenetic view. Here, we applied a fully quantitative and validated LC‐MS/MS method to determine genomic 5mC and 5hmC in the brain cortex of 3 month‐aged (12, 15, and 18 month) AD model mouse and found significant increases of 5mC and 5hmC levels in different months of AD mouse when compared with age‐matched wild‐type control and exhibited rising trend from 12‐month to 18‐month AD mouse, thereby supporting genomic DNA methylation and hydroxymethylation were positively correlated with developing AD.  相似文献   

4.
A rapid, simple, sensitive and selective LC‐MS/MS method was developed and validated for simultaneous quantification of montelukast (MT) and fexofenadine (FF) in human plasma (200 μL) using montelukast‐d6 (MT‐d6) and fexofenadine‐d10 (FF‐d10), respectively as an internal standard (IS) as per the US Food and Drug Administration guidelines. The chromatographic resolution was achieved on a Chromolith RP18e column using an isocratic mobile phase consisting of 20 mm ammonium formate–acetonitrile (20:80, v/v) at flow rate of 1.2 mL/min. The LC‐MS/MS was operated under the multiple‐reaction monitoring mode using electrospray ionization. The total run time of analysis was 4 min and elution of MT, FF, MT‐d6 and FF‐d10 occurred at 2.5, 1.2, 2.4 and 1.2 min, respectively. The standard curve found to be linear in the range 2.00–1000 ng/mL with a coefficient of correlation of ≥0.99 for both the drugs. The intra‐ and inter‐day accuracy and precision values for MT and FF met the acceptance as per FDA guidelines. MT and FF were found to be stable in a battery of stability studies viz., bench‐top, auto‐sampler and repeated freeze‐thaw cycles. The validated assay was applied to an oral bioequivalence study in humans. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
This study describes the development of a rapid and sensitive high‐performance liquid chromatography–electrospray ionization tandem mass spectrometry (LC‐MS/MS) assay for the quantification of [6]‐gingerol in mouse plasma and application to a pharmacokinetic study after dose ranging in mice. The assay involved a protein precipitation step with acetonitrile and an isocratic elution using a mobile phase consisting of acetonitrile and water containing 0.1% formic acid (80:20 v/v). The multiple reaction monitoring was based on the transition of m/z = 277.2 → 177.1 for [6]‐gingerol and 294.2 → 137.1 for nonivamide (internal standard). The assay was validated to demonstrate the specificity, linearity, recovery, accuracy, precision and stability. The calibration curves were linear over the wide concentration range of 10–10,000 ng/mL (r ≥ 0.9988). The lower limit of quantification was 10 ng/mL using a small volume of mouse plasma (20 μL). The method was successfully applied to a pharmacokinetic study in mice after intravenous injection of [6]‐gingerol at 1.5, 3 and 6 mg/kg doses. The pharmacokinetics of [6]‐gingerol were linear over the dose range studied as demonstrated by the linear increase in area under the concentration‐time curve (AUCinf) with no significant change in the systemic clearance (Cls), volume of distribution (Vss) and elimination half‐life (t1/2) as a function of dose. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A high‐throughput, simple, highly sensitive and specific LC‐MS/MS method has been developed for simultaneous estimation of simvastatin acid (SA), amlodipine (AD) and valsartan (VS) with 500 µL of human plasma using deuterated simvastatin acid as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode (MRM) using electrospray ionization. The assay procedure involved precipitation of SA, AD, VS and IS from plasma with acetonitrile. The total run time was 2.8 min and the elution of SA, AD, VS and IS occurred at 1.81, 1.12, 1.14 and 1.81 min, respectively; this was achieved with a mobile phase consisting of 0.02 m ammonium formate (pH 4.5):acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on an X‐Terra C18 column. A linear response function was established for the range of concentrations 0.5–50 ng/mL (> 0.994) for VS and 0.2–50 ng/mL (> 0.996) for SA and AD. The method validation parameters for all three analytes met the acceptance as per FDA guidelines. This novel method has been applied to human pharmacokinetic study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A highly sensitive and specific LC‐MS/MS method was developed for simultaneous estimation of acetyl co‐enzyme A (ACoA) and malonyl co‐enzyme A (MCoA) in surrogate matrix using n‐propionyl co‐enzyme A as an internal standard (IS). LC‐MS/MS was operated under the multiple reaction‐monitoring mode using the electrospray ionization technique. Simple acidification followed by dilution using an assay buffer process was used to extract ACoA, MCoA and IS from surrogate matrix and tissue samples. The total run time was 3 min and the elution of both analytes (ACoA, MCoA) and IS occurred at 1.28 min; this was achieved with a mobile phase consisting of 5 mM ammonium formate (pH 7.5)–acetonitrile (30:70, v/v) delivered at a flow rate of 1 mL/min on a monolithic RP‐18e column. A linear response function was established for the range of concentrations 1.09–2187 and 1.09–2193 ng/mL for ACoA and MCoA, respectively. The intra‐ and inter‐day precision values for ACoA and MCoA met the acceptance as per FDA guidelines. ACoA and MCoA were stable in a battery of stability studies viz. bench‐top, auto‐sampler and long‐term. The developed assay was used to quantitate ACoA and MCoA levels in various tissues of rat. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Matrix effects of different biological samples, including phosphate‐buffered saline–bovine serum albumin (PBS‐BSA), gelded horse serum, mouse serum, and mouse brain, were investigated for the determination of 17α‐ and β‐estradiol using derivatization with dansyl chloride prior to LC‐MS/MS. Matrix effects were evaluated based on the slopes of regression lines plotted from results obtained in biological matrices versus pure standard solutions. Such plots indicate the enhancement or suppression of signal based on the presence of a particular biological fluid for a particular method. The matrix effects from PBS‐BSA were similar to those of mouse serum. In contrast, analyses performed from horse serum and mouse brain yielded significant ion suppression, especially for 17β‐estradiol. Precipitation during derivatization was observed when pre‐concentrated samples were processed with ethyl acetate as an extraction solvent. This was overcome with the use of methyl tert‐butyl ether; however, matrix effects from this preparation were still present, evidenced by signal suppression and poor linearity in the standard curve. This work affirms that caution should be taken in the transfer of methods for use with different biological matrices, especially in the case where surrogate matrices are necessary for calibration purposes.  相似文献   

9.
Precise measurement of low enrichment of stable isotope labeled amino‐acid tracers in tissue samples is a prerequisite in measuring tissue protein synthesis rates. The challenge of this analysis is augmented when small sample size is a critical factor. Muscle samples from human participants following an 8 h intravenous infusion of L‐[ring‐13C6]phenylalanine and a bolus dose of L‐[ring‐13C6]phenylalanine in a mouse were utilized. Liquid chromatography tandem mass spectrometry (LC/MS/MS), gas chromatography (GC) MS/MS and GC/MS were compared to the GC‐combustion‐isotope ratio MS (GC/C/IRMS), to measure mixed muscle protein enrichment of [ring‐13C6]phenylalanine enrichment. The sample isotope enrichment ranged from 0.0091 to 0.1312 molar percent excess. As compared with GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS showed coefficients of determination of R2 = 0.9962 and R2 = 0.9942, and 0.9217 respectively. However, the precision of measurements (coefficients of variation) for intra‐assay are 13.0%, 1.7%, 6.3% and 13.5% and for inter‐assay are 9.2%, 3.2%, 10.2% and 25% for GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS, respectively. The muscle sample sizes required to obtain these results were 8 µg, 0.8 µg, 3 µg and 3 µg for GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS, respectively. We conclude that LC/MS/MS is optimally suited for precise measurements of L‐[ring‐13C6]phenylalanine tracer enrichment in low abundance and in small quantity samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Stable isotope‐coding coupled with mass spectrometry is a popular method for quantitative proteomics and peptide quantification. However, the efficiency of the derivatization reaction at a particular functional group, especially in complex structures, can affect accuracy. Here, we present a dual functional‐group derivatization of bioactive peptides followed by micro liquid chromatography‐tandem mass spectrometry (LC‐MS/MS). By separating the sensitivity‐enhancement and isotope‐coding derivatization reactions, suitable chemistries can be chosen. The peptide amino groups were reductively alkylated with acetaldehyde or acetaldehyde‐d4 to afford N‐alkylated products with different masses. This process is simple, quick and high‐yield, and accurate comparative analysis can be achieved for the mass‐differentiated peptides. Then, the carboxyl groups were derivatized with 1‐(2‐pyrimidinyl)piperazine to increase MS/MS sensitivity. Angiotensins I–IV, bradykinin and neurotensin were analyzed after online solid phase extraction by micro LC‐MS/MS. In all instances, a greater than 17‐fold increase in sensitivity was achieved, compared with the analyses of the underivatized peptides. Furthermore, the values obtained from the present method were in agreement with the result from isotope dilution quantification using isotopically labeled angiotensin I [Asp‐Arg‐(Val‐d8)‐Tyr‐Ile‐His‐Pro‐(Phe‐d8)‐His‐Leu]. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
13–197 is a novel NF‐κB inhibitor that shows promising in vitro efficacy data against pancreatic cancer. In this study, we characterized the pharmacokinetics, tissue distribution, protein binding and metabolism of 13–197 in mice and rats. A valid, sensitive and selective LC‐MS/MS method was developed. This method was validated for the quantification of 13–197, in the range of 0.1 or 0.2‐500 ng/mL in mouse plasma, liver, kidney, lung, heart, spleen, brain, urine and feces. 13–197 has low bioavailability of 3 and 16% in mice and rats, respectively. It has faster absorption in mice with 12‐fold shorter Tmax than in rats. Tissue concentrations were 1.3–69.2‐fold higher in mice than in rats at 72 h after intravenous administration. 13–197 is well distributed to the peripheral tissues and has relatively high tissue–plasma concentration ratios, ranging from 1.8 to 3634, in both mice and rats. It also demonstrated more than 99% binding to plasma proteins in both mice and rats. Finally, <1% of 13–197 is excreted unchanged in urine and feces, and metabolite profiling studies detected more than 20 metabolites in mouse and rat plasma, urine and feces, which indicates that 13–197 is extensively metabolized and primarily eliminated by metabolism rather than by excretion. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A sensitive, selective and rapid LC–ESI–MS/MS method has been developed and validated for the quantification of copanlisib in mouse plasma using enasidenib as an internal standard (IS) as per regulatory guideline. Copanlisib and the IS were extracted from mouse plasma using ethyl acetate as an extraction solvent and chromatographed using an isocratic mobile phase (0.2% formic acid–acetonitrile; 25:75, v/v) on a HyPURITY C18 column. Copanlisib and the IS eluted at ~0.95 and 2.00 min, respectively. The MS/MS ion transitions monitored were m/z 481.1 → 360.1 and m/z 474.0 → 456.0 for copanlisib and the IS, respectively. The calibration range was 3.59–3588 ng/mL. The intra‐ and inter‐batch accuracy and precision (RE and RSD) across quality controls met the acceptance criteria. Stability studies showed that copanlisib was stable in mouse plasma for one month. This novel method has been applied to a pharmacokinetic study in mice.  相似文献   

13.
A highly sensitive, specific and rapid LC‐ESI‐MS/MS method has been developed and validated for the quantification of paricalcitol (PAR) in human plasma (500 μL) using paricalcitol‐d6 (PAR‐d6) as an internal standard (IS) as per regulatory guidelines. A liquid–liquid extraction method was used to extract the analyte and IS from human plasma. Chromatography was achieved on Zorbax SB C18 column using an isocratic mobile phase in a gradient flow. The total chromatographic run time was 6.0 min and the elution of PAR and PAR‐d6 occurred at ~2.6 min. A linear response function was established for the range of concentrations 10–500 pg/mL in human plasma. The intra‐ and inter‐day accuracy and precision values for PAR met the acceptance criteria. The validated assay was applied to quantitate PAR concentrations in human plasma following oral administration of 4 µg capsules to humans. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Cefuroxime lysine is a new second‐generation cephalosporins, which can penetrate the blood–brain barrier to cure the meningitis. In order to investigate its acute toxicokinetic study after intraperitoneal injection of 675 mg/kg cefuroxime lysine, a sensitive and clean ultra‐fast liquid chromatography–tandem mass spectrometry (UFLC‐MS/MS) method for the determination of cefuroxime lysine in microdialysate samples was developed and validated, which was compared with UFLC‐UV as a reference method. Chromatographic separation was performed on a Shim‐pack XR‐ODS C18 column (75 × 3.0 mm, 2.2 µm), with an isocratic elution of 0.1% formic acid in acetonitrile–0.1% formic acid in water (45:55, v/v) for LC‐MS and acetonitrile–20 mm potassium dihydrogen phosphate (pH 3.0,20:80, v/v) for LC‐UV. The lower limit of detection was 0.01 µg/mL for LC‐MS and 0.1 µg/mL for LC‐UV method, with the same corresponding linearity range of 0.1–50 µg/mL. The intra‐ and inter‐day precisions (relative standard deviation) for both methods were from 1.1 to 8.9%, while the accuracy was all within ±10.9%. The results of both methods were finally compared using paired t‐test; the results indicated that the concentrations measured by the two methods correlated significantly (p < 0.05), which suggested that the two methods based on LC‐MS and LC‐UV were suitable for the acute toxicokinetic study. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Pteryxin is a coumarin compound naturally occurring in the roots of Radix Peucedani, a commonly used as traditional Chinese medicine for the treatment of certain respiratory diseases and hypertension. An UPLC‐MS/MS method was established to quantify pteryxin in mouse plasma and tissue homogenates. Isoimperatorin was used as internal standard (IS). The method was based on protein precipitation with methanol for sample preparation. Pteryxin and IS were separated using a UPLC? BEH C18 column and eluted with a mobile phase consisting of methanol and water (70:30, v/v) at a flow‐rate of 0.2 mL/min. MS/MS detection was carried out by monitoring the fragmentation of m/z 409.3–287.2 for pteryxin and m/z 271.3–185.2 for IS on a triple‐quadrupole mass spectrometer. The total run time was only 6 min. The results showed that it had good linearity over a wide concentration range (r > 0.999), and pteryxin was rapidly distributed and then eliminated from mouse plasma (t1/2 =1.463 h). The major distribution tissues of pteryxin in mice were liver, and pteryxin was enabled to cross the blood–brain barrier owing to its low polarity. There was no long‐term accumulation of pteryxin in mouse tissues. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Tacrine, as a drug for treating Alzheimer's disease (AD), has low efficacy owing to its single function and serious side effects. However, tacrine‐6‐ferulic acid (T6FA), the dimer which added ferulic acid to tacrine, has been found to be a promising multifunctional drug candidate for AD and much more potent and selective on acetylcholinesterase (AChE) than tacrine. The aim of the present work was to develop and validate an LC‐MS/MS method with electrospray ionization for the quantification of T6FA in rat plasma using tacrine‐3‐ferulic acid (T3FA) as internal standard and to examine its application for pharmacokinetic study in rats. Following a single liquid–liquid extraction with ethyl acetate, chromatographic separation was achieved at 25 °C on a BDS Hypersil C18 column with a mobile phase composed of 1% formic acid and methonal (30:70, v/v) at a flow rate of 0.2 mL/min. Quantification was achieved by monitoring the selected ions at m/z 474.2 → 298.1 for T6FA and m/z 432.2 → 199.0 for T3FA. The method was validated to be rapid, specific, accurate and precise over the concentration range of 0.5–1000.0 ng/mL in rat samples. Furthermore, it was successfully applied for the pharmacokinetic measurement of T6FA with an oral administration at 40 mg/kg to rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A sensitive, specific and rapid LC‐ESI‐MS/MS method has been developed and validated for the quantification of epacadostat in mouse plasma using tolbutamide as an internal standard (IS) as per regulatory guidelines. Sample preparation was accomplished through a protein precipitation. Chromatographic separation was performed on an Atlantis dC18 column using a binary gradient using mobile phase A (acetonitrile) and B (0.2% formic acid in water) at a flow rate of 0.90 mL/min. Elution of epacadostat and IS occurred at ~2.41 and 2.51 min, respectively. The total chromatographic run time was 3.2 min. A linear response function was established in the concentration range of 1.07–533 ng/mL. The intra‐ and inter‐day accuracy and precision were in the ranges of 1.81–12.9 and 3.80–11.1%, respectively. This novel method has been applied to a pharmacokinetic study in mice.  相似文献   

18.
A liquid chromatography–tandem mass spectrometric (LC‐MS/MS) method was developed and validated for the determination of GDC‐0152 in human plasma to support clinical development. The method consisted of a solid‐phase extraction for sample preparation and LC‐MS/MS analysis in the positive ion mode using TurboIonSprayTM for analysis. d7‐GDC‐0152 was used as the internal standard. A linear regression (weighted 1/concentration2) was used to fit calibration curves over the concentration range of 0.02–10.0 ng/mL for GDC‐0152. There were no endogenous interference components in the blank human plasma tested. The accuracy at the lower limit of quantitation was 99.3% with a precision (%CV) of 13.9%. For quality control samples at 0.0600, 2.00 and 8.00 ng/mL, the between‐run %CV was ≤8.64. Between‐run percentage accuracy ranged from 98.2 to 99.6%. GDC‐0152 was stable in human plasma for 363 days at ?20°C and for 659 days at ?70°C storage. GDC‐0152 was stable in human plasma at room temperature for up to 25 h and through three freeze–thaw cycles. In whole blood, GDC‐0152 was stable for 12 h at 4°C and at ambient temperature. This validated LC‐MS/MS method for determination of GDC‐0152 was used to support clinical studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
In this study, a liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated to simultaneously determine the anticancer drugs etoposide and paclitaxel in mouse plasma and tissues including liver, kidney, lung, heart, spleen and brain. The analytes were extracted from the matrices of interest by liquid–liquid extraction using methyl tert‐butyl ether–dichloromethane (1:1, v/v). Chromatographic separation was achieved on an Ultimate XB‐C18 column (100 × 2.1 mm, 3 μm) at 40°C and the total run time was 4 min under a gradient elution. Ionization was conducted using electrospray ionization in the positive mode. Stable isotope etoposide‐d3 and docetaxel were used as the internal standards. The lower limit of quantitation (LLOQ) of etoposide was 1 ng/g tissue for all tissues and 0.5 ng/mL for plasma. The LLOQ of paclitaxel was 0.4 ng/g tissue and 0.2 ng/mL for all tissues and plasma, respectively. The coefficients of correlation for all of the analytes in the tissues and plasma were >0.99. Both intra‐ and inter‐day accuracy and precision were satisfactory. This method was successfully applied to measure plasma and tissue drug concentrations in mice treated with etoposide and paclitaxel‐loaded self‐microemulsifying drug‐delivery systems.  相似文献   

20.
A rapid, simple, specific and sensitive LC‐MS/MS method has been developed and validated for the enantiomeric quantification of amlodipine (AML) isomers [R‐amlodipine (R‐AML) and S‐amlodipine (S‐AML)] with 200 μL of human plasma using R‐AML‐d4 and S‐AML‐d4 as corresponding internal standards as per regulatory guidelines. A simple liquid–liquid extraction process was used to extract these analytes from human plasma. The total run time was 3.5 min and the elution of R‐AML, S‐AML, R‐AML‐d4 and S‐AML‐d4 occurred at 1.62, 2.51, 1.63 and 2.53 min, respectively. This was achieved with a mobile phase consisting of 0.2% ammonia–acetonitrile (20:80, v/v) at a flow rate of 1 mL/min on a Chiralcel OJ RH column. A linear response function was established for the range of concentrations 0.1–10 ng/mL (r >0.998) for each enantiomer. The intra‐ and inter‐day precision values for both enantiomers met the acceptance criteria. Both enantiomers were stable in a set of stability studies, viz. bench‐top, auto‐sampler, freeze–thaw cycles and long‐term. The current assay was successfully applied to a pharmacokinetic study to quantitate AML enantiomers following oral administration of 10 mg AML tablet to humans. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号