首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2D conductive metal–organic frameworks (2D c‐MOFs) feature promising applications as chemiresistive sensors, electrode materials, electrocatalysts, and electronic devices. However, exploration of the spin‐polarized transport in this emerging materials and development of the relevant spintronics have not yet been implemented. In this work, layer‐by‐layer assembly was applied to fabricate highly crystalline and oriented thin films of a 2D c‐MOF, Cu3(HHTP)2, (HHTP: 2,3,6,7,10,11‐hexahydroxytriphenylene), with tunable thicknesses on the La0.67Sr0.33MnO3 (LSMO) ferromagnetic electrode. The magnetoresistance (MR) of the LSMO/Cu3(HHTP)2/Co organic spin valves (OSVs) reaches up to 25 % at 10 K. The MR can be retained with good film thickness adaptability varied from 30 to 100 nm and also at high temperatures (up to 200 K). This work demonstrates the first potential applications of 2D c‐MOFs in spintronics.  相似文献   

2.
3.
Herein, we report a strategy for exploiting nanoscale metal–organic frameworks (nano‐MOFs) as templates for the layer‐by‐layer (LbL) assembly of polyelectrolytes. Because small‐molecule drugs or imaging agents cannot be efficiently encapsulated by polyelectrolyte nanocapsules, we investigated two promising and biocompatible polymers (comb‐shaped polyethylene glycol (PEG) and hyperbranched polyglycerol‐based PEG) for the conjugation of model drugs and imaging agents, which were then encapsulated inside the nano‐MOF‐templated nanocapsules. Furthermore, we also systemically explored the release kinetics of the encapsulated conjugates, and examined how the encapsulation and/or release processes could be controlled by varying the composition and architecture of the polymers. We envision that our nano‐MOFs‐templated nanocapsules, through combining with small‐molecule–polymer conjugates, will represent a new type of delivery system that could open up new opportunities for biomedical applications.  相似文献   

4.
We demonstrate the guiding principles behind simple two dimensional self‐assembly of MOF nanoparticles (NPs) and oleic acid capped iron oxide (Fe3O4) NCs into a uniform two‐dimensional bi‐layered superstructure. This self‐assembly process can be controlled by the energy of ligand–ligand interactions between surface ligands on Fe3O4 NCs and Zr6O4(OH)4(fumarate)6 MOF NPs. Scanning transmission electron microscopy (TEM)/energy‐dispersive X‐ray spectroscopy and TEM tomography confirm the hierarchical co‐assembly of Fe3O4 NCs with MOF NPs as ligand energies are manipulated to promote facile diffusion of the smaller NCs. First‐principles calculations and event‐driven molecular dynamics simulations indicate that the observed patterns are dictated by combination of ligand–surface and ligand–ligand interactions. This study opens a new avenue for design and self‐assembly of MOFs and NCs into high surface area assemblies, mimicking the structure of supported catalyst architectures, and provides a thorough fundamental understanding of the self‐assembly process, which could be a guide for designing functional materials with desired structure.  相似文献   

5.
6.
The luminescent MOF [(CH3)2NH2]2[(Zn2O)L]?5 DMF (NENU‐519, NENU=Northeast Normal University) with a zeolite BCT topology was successfully synthesized. It is a rare example of a two‐fold interpenetrated framework with a zeolite topology. NENU‐519 demonstrates the ability to selectively adsorb cationic dyes. Furthermore we developed Rh6@NENU‐519 (Rh6=Rhodamine 6G) as a dual‐emitting sensor for probing different volatile organic molecules (VOMs) due to an energy transfer between L and the dye. The composite can be used to distinguish the isomers of o‐, m‐, and p‐xylene and ethylbenzene using the emission‐peak‐height ratios of L to the dye as detectable signals, in which the readout signals are involved in the interactions between the dye@MOF composite and the guest analytes. Moreover, Rh6@NENU‐519 can serve as a luminescent switch for the detection of different aromatic compounds, like benzene, benzene substituted with different groups, and pyridine. In other words, the Rh6@NENU‐519 composite can be used as molecular decoder of the structural information of different VOMs into recognizable luminescent signals. Hopefully this work will open a new corridor to develop luminescent guest@MOF composites as sensors for practical applications.  相似文献   

7.
8.
Controlling the orientation and long‐range order of nanostructures is a key issue in the self‐assembly of block copolymer micelles. Herein, a versatile strategy is presented to transform one‐component oxime‐based block copolymer micelles into long‐range ordered dense nanopatterns. Photoisomerization provides a straightforward and versatile approach to convert the hydrogen‐bonding association from inward dimerization (E‐type oxime motifs, slightly desolvated in ethyl acetate) into outward interchain association (Z‐type ones, highly desolvated in ethyl acetate). This increases the glass transition temperature in bulk and converts swollen micelles into compact spherical micelles in solution. The reconstruction of these micelles on various substrates demonstrates that the phase transformation enables reconstruction of spherical micelles into mesoscopic sheets, nanorods, nanoworms, nanowires, networks, and eventually into long‐range ordered and densely packed textile‐like and lamellar nanopatterns on a macroscopic scale by adjusting E/Z‐oxime ratio and solvent‐evaporation rate.

  相似文献   


9.
The catalytic acceptorless dehydrogenation (CAD) is an attractive synthetic route to unsaturated compounds because of its high atomic efficiency. Here we report electrochemical acceptorless dehydrogenation of N‐heterocycles to obtain quinoline or indole derivatives using metal‐organic layer (MOL) catalyst. MOL is the two‐dimensional version of metal‐organic frameworks (MOF), and it can be constructed on conductive multi‐walled carbon nanotubes via facile solvothermal synthesis to overcome the conductivity constraint for MOFs in electrocatalysis. TEMPO‐OPO32? was incorporated into the system through a ligand exchange with capping formate on the MOL surface to serve as the active catalytic centers. The hybrid catalyst is efficient in the organic conversion and can be readily recycled and reused.  相似文献   

10.
Photoconductivity is a characteristic property of semi‐conductors. Herein, we present a photo‐conducting crystalline metal–organic framework (MOF) thin film with an on–off photocurrent ratio of two orders of magnitude. These oriented, surface‐mounted MOF thin films (SURMOFs), contain porphyrin in the framework backbone and C60 guests, loaded in the pores using a layer‐by‐layer process. By comparison with results obtained for reference MOF structures and based on DFT calculations, we conclude that donor–acceptor interactions between the porphyrin of the host MOF and the C60 guests give rise to a rapid charge separation. Subsequently, holes and electrons are transported through separate channels formed by porphyrin and by C60, respectively. The ability to tune the properties and energy levels of the porphyrin and fullerene, along with the controlled organization of donor–acceptor pairs in this regular framework offers potential to increase the photoconduction on–off ratio.  相似文献   

11.
By using a novel C3‐symmetrical tricarboxylate (4,4′,4′′‐benzene‐1,3,5‐triyl‐1,1′,1′′‐trinaphthoic acid), a novel zirconium‐based metal‐organic framework ZJNU‐30 was solvothermally synthesized and structurally characterized. Single‐crystal X‐ray structural analyses show that ZJNU‐30 consists of Zr6‐based nodes connected by the organic linkers to form a (3,8)‐connected network featuring the coexistence of two different polyhedral cages: octahedral and cuboctahedral cages with the dimensions of about 14 and 22 Å, respectively. Remarkably, ZJNU‐30 is very stable when exposed to air for one month. More importantly, with a moderately high surface area, hierarchical pore structures, and an aromatic‐rich pore surface in the framework, ZJNU‐30 , after activation, exhibits a promising potential for the selective adsorptive separation of industrially important butene isomers consisting of cis‐2‐butene, trans‐2‐butene, 1‐butene, and iso‐butene at ambient temperature. This separation was established exclusively by gas adsorption isotherms and simulated breakthrough experiments. To the best of our knowledge, this is the first study investigating porous metal‐organic frameworks for butene‐isomer separation.  相似文献   

12.
Metal–organic frameworks (MOFs) have demonstrated great potentials in a variety of important applications. To enhance the inherent properties and endow materials with multifunctionality, the rational design and synthesis of MOFs with nanoscale porosity and hollow feature is highly desired and remains a great challenge. In this work, the formation of a series of well‐defined MOF (MOF‐5, FeII‐MOF‐5, FeIII‐MOF‐5) hollow nanocages by a facile solvothermal method, without any additional supporting template is reported. A surface‐energy‐driven mechanism may be responsible for the formation of hollow nanocages. The addition of pre‐synthesized poly(vinylpyrrolidone)‐ (PVP) capped noble‐metal nanoparticles into the synthetic system of MOF hollow nanocages yields the yolk–shell noble metal@MOF nanostructures. The present strategy to fabricate hollow and yolk–shell nanostructures is expected to open up exciting opportunities for developing a novel class of inorganic–organic hybrid functional nanomaterials.  相似文献   

13.
Metal–organic framework (MOF) UiO‐66 thin films are solvothermally grown on conducting substrates. The as‐synthesized MOF thin films are subsequently dried by a supercritical process or treated with polydimethylsiloxane (PDMS). The obtained UiO‐66 thin films show excellent molecular sieving capability as confirmed by the electrochemical studies for redox‐active species with different sizes.  相似文献   

14.
Fe‐Co‐N‐C electrocatalysts have proven superior to their counterparts (e.g. Fe‐N‐C or Co‐N‐C) for the oxygen reduction reaction (ORR). Herein, we report on a unique strategy to prepare Fe‐Co‐N‐C?x (x refers to the pyrolysis temperature) electrocatalysts which involves anion‐exchange of [Fe(CN)6]3? into a cationic CoII‐based metal‐organic framework precursor prior to heat treatment. Fe‐Co‐N‐C‐900 exhibits an optimal ORR catalytic performance in an alkaline electrolyte with an onset potential (Eonset: 0.97 V) and half‐wave potential (E1/2: 0.86 V) comparable to that of commercial Pt/C (Eonset=1.02 V; E1/2=0.88 V), which outperforms the corresponding Co‐N‐C‐900 sample (Eonset=0.92 V; E1/2=0.84 V) derived from the same MOF precursor without anion‐exchange modification. This is the first example of Fe‐Co‐N‐C electrocatalysts fabricated from a cationic CoII‐based MOF precursor that dopes the Fe element via anion‐exchange, and our current work provides a new entrance towards MOF‐derived transition‐metal (e.g. Fe or Co) and nitrogen‐codoped carbon electrocatalysts with excellent ORR activity.  相似文献   

15.
Traditional films cannot fully adapt to industrial applications and to intensified processes. Advanced mixed‐matrix membranes comprising metal–organic frameworks (MOF) embedded in a polymer matrix have been developed with the goal of breaking the trade‐off effect of traditional polymer membranes and achieving separation performance beyond Robeson's upper limit. The key challenges in the fabrication of MOF‐based mixed‐matrix membranes are an enhancement in compatibility between the inorganic filler and the polymer matrix, elimination of the irregular morphology and non‐selective interfacial defects, and further improvement in the gas‐separation performance. This review summarizes the recent advances in protocols and strategies in terms of designing interfacial interactions to enhance the MOF/polymer interface compatibility. This review aims at providing some meaningful insights into preparing MOF‐based mixed‐matrix membranes targeting ideal interfacial morphology and leading to excellent gas‐separation performance.  相似文献   

16.
17.
A green and sustainable strategy synthesizes clinical medicine warfarin anticoagulant by using lipase‐supported metal–organic framework (MOF) bioreactors (see scheme). These findings may be beneficial for future studies in the industrial production of chemical, pharmaceutical, and agrochemical precursors.  相似文献   

18.
The catalytic performance of metal–organic frameworks (MOFs) for the synthesis of cyclic carbonate from carbon dioxide and epoxides has been explored under solvent and solvent‐free conditions, respectively. It was found that MOF catalysts have significantly improved catalytic activities in solvent‐free CO2 cycloaddition reactions than those in solvent. The mechanism was discussed with regard to the competition of solvent with substrate to adhere MOF catalysts during the reaction process.  相似文献   

19.
We propose a facile room‐temperature synthesis of a metal–organic framework (MOF) with a bimodal mesoporous structure (3.9 and 17‐28 nm) in an ionic liquid (IL)/ethylene glycol (EG) mixture. The X‐ray diffraction analysis reveals that MOF formation can be efficiently promoted by the presence of the EG/IL interface at room temperature. The MOFs with mesoporous networks are characterized by SEM and TEM. The formation mechanism of the mesoporous MOF in EG/IL mixture is investigated. It is proposed that the EG nanodroplets in the IL work as templates for the formation of the large mesopores. The as‐synthesized mesoporous metal–organic framework is an effective and reusable heterogeneous catalyst to catalyze the aerobic oxidation of benzylic alcohols.  相似文献   

20.
Amide‐functionalized metal–organic frameworks (AFMOFs) as a subclass of MOF materials have received great interest recently because of their intriguing structures and diverse potential applications. In this work, solvothermal reactions between indium nitrate and two mixed‐linkers afforded two new isoreticular 8‐connected trinuclear indium‐based AFMOFs of [(In3O)(OH)(L2)2(IN)2]?(solv)x ( 2‐In ) and [(In3O)(OH)(L2)2(AIN)2]?(solv)x ( NH2‐2‐In ) (H2L2=4,4′‐(carbonylimino)dibenzoic acid and HIN=isonicotinic acid or HAIN=3‐aminoisonicotinic acid), respectively. Moreover, by means of reticular chemistry, an extended network of [(In3O)(OH)(L3)2(PB)2]?(solv)x (3‐In) (H2L3=4,4′‐(terephthaloylbis(azanediyl))dibenzoic acid, HPB=4‐(4‐pyridyl)benzoic acid) was also successfully realized after prolongation of the former dicarboxylate linker and HIN, resulting in a truly 8‐connected isoreticular AFMOF platform. These frameworks were structurally determined by single‐crystal X‐ray diffraction (SCXRD). Sorption studies further demonstrate that 2‐In and NH2‐2‐In exhibit not only high surface areas and pore volumes but also relatively high carbon capture capabilities (the CO2 uptakes reach 60.0 and 75.5 cm3 g?1 at 298 K and 760 torr, respectively) due to the presences of amide and/or amine functional groups. The selectivity of CO2/N2 and CO2/CH4 calculated by IAST are 10.18 and 12.43, 4.20 and 4.23 for 2‐In and NH2‐2‐In , respectively, which were additionally evaluated by mixed‐gases dynamic breakthrough experiments. In addition, high‐pressure gas sorption measurements show that both materials could take up moderate amounts of natural gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号