首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The palladium complex of MgO‐supported melamine‐formaldehyde polymer catalyst was prepared and characterized by X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). The preparation of Nn‐octyl‐D ‐glucamine was investigated by using this complex as the catalyst. It was found that the palladium complex of MgO‐supported melamine‐formaldehyde polymer has a good catalytic activity for the hydrogenation of n‐octylamine with D ‐glucose to produce Nn‐octyl‐D ‐glucamine. The effects of additive, solvent, temperature, hydrogen pressure, Pd content in the catalyst and the amount of catalyst on the preparation of Nn‐octyl‐D ‐glucamine have all been studied. Under the optimum experimental conditions—D ‐glucose, 37.2 mmol; n‐octylamine, 31 mmol; triethylamine, 1.0 ml; ethanol, 60 ml; temperature, 333 K; hydrogen pressure, 1.5 MPa; the amount of the catalyst (Pd content 3.55%, N/Pd molar ratio 12), 0.7 g—the highest yield of Nn‐octyl‐D ‐glucamine (57.6%) was obtained. XRD results show that melamine‐formaldehyde polymer changed the structure of MgO, and XPS results suggest that coordination bonds were formed between the hexatomic ring and metal atom, and palladium particles were immobilized on the polymer. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
A sulfonated magnetic cellulose‐based nanocomposite was applied as an efficient, inexpensive and green catalyst for the one‐pot three‐component synthesis of 7‐aryl‐8H ‐benzo[h ]indeno[1,2‐b ]quinoline‐8‐ones starting from 1,3‐indanedione, aromatic aldehydes and 1‐naphthylamine under solvent‐free conditions in high yields (79–98%) within short reaction times (2–5 min). The nanobiostructure catalyst can be easily separated from the reaction mixture by using an external magnet and reused several times.  相似文献   

3.
Unprecedented organocatalyzed asymmetric cascade reactions have been developed for the facile synthesis of chiral spirooxindole‐based isotetronic acids and 5‐1H‐pyrrol‐2‐ones.The asymmetric 1,2‐addition reactions of α‐ketoesters to isatins and imines by using an acid–base bifunctional 6′‐OH cinchona alkaloid catalyst, followed by cyclization and enolization of the resulting adducts, gave chiral spiroisotetronic acids and 5‐1H‐pyrrol‐2‐ones, respectively, in excellent optical purities (up to 98 % ee). FT‐IR analysis supported the existence of hydrogen‐bonding interaction between the 6′‐OH group of the cinchona catalyst and an isatin carbonyl group, an interaction that might be crucial for catalyst activity and stereocontrol.  相似文献   

4.
N‐Boc ketimines derived from pyrazolin‐5‐ones were explored to develop an unprecedented domino aza‐Friedel–Crafts/N,O‐acetalization reaction with 2‐naphthols. The novel method requires a catalyst loading of only 0.5 mol % of a bifunctional squaramide catalyst, is scalable to gram amounts, and provides a new series of furanonaphthopyrazolidinone derivatives bearing two vicinal tetra‐substituted stereogenic centers in excellent yields (95–98 %) and stereoselectivity (>99:1 d.r. and 97–98 % ee ). A different reactivity was observed in the case of 1‐naphthols and other electron‐rich phenols, which led to the aza‐Friedel–Crafts adducts in 70–98 % yield and 47–98 % ee .  相似文献   

5.
A bottom‐up strategy was used for the synthesis of cross‐linked copolymers containing the organocatalyst N‐{(1R)‐2′‐{[(4‐ethylphenyl)sulfonyl]amino}[1,1′‐binaphthalen]‐2‐yl}‐D ‐prolinamide derived from 2 (Scheme 1). The polymer‐bound catalyst 5b containing 1% of divinylbenzene as cross‐linker showed higher catalyst activity in the aldol reaction between cyclohexanone and 4‐nitrobenzaldehyde than 5a and 5c . Remarkably, the reaction in the presence of 5b was carried out under solvent‐free, mild conditions, achieving up to 93% ee (Table 1). The polymer‐bound catalyst 5b was recovered by filtration and re‐used up to seven times without detrimental effects on the achieved diastereo‐ and enantioselectivities (Table 2). The catalytic procedure with polymer 5b was extended to the aldol reaction under solvent‐free conditions of other ketones, including functionalized ones, and different aromatic aldehydes (Table 3). In some cases, the addition of a small amount of H2O was required to give the best results (up to 95% ee). Under these reaction conditions, the cross‐aldol reaction between aldehydes proceeded in moderate yield and diastereo‐ and enantioselectivity (Scheme 2).  相似文献   

6.
A new silica‐supported biopolymer‐metal complex, silica‐supported chitosan‐iron‐nickel complex was prepared by a very simple method. This complex catalyst can be used as a catalyst in the asymmetric hydrogenation of propiophenone to (R)‐(+)‐1‐phenyl‐1‐propanol and acetophenone to (R)‐(+)‐1‐phenyl ethanol in 91.7 and 77.7% optical yields, respectively, at 110°C and under 70 kg/cm2 pressure. The catalyst could be reused several times without any remarkable change in the catalytic activity. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Chloro, fluoro, and nitro derivatives of 7‐amino‐5‐aryl‐6‐cyano‐5H‐pyrano pyrimidin‐2,4‐diones were produced by reacting malononitrile, barbituric acid, and aromatic aldehydes together with a DABCO catalyst in an aqueous one‐pot reaction. This is the first report of these compounds being synthesized with DABCO as a catalyst, which produced the compounds in yields in excess of 90%. The 2,4‐difluoro derivative ( 11 ) was novel. The structures of the synthesized compounds were elucidated by means of 1H, 13C, and 2D NMR spectroscopy. Compound 2 (2‐Cl derivative) had MBC values of <200μM against both Staphylococcus aureus and MRSA, and the 2‐nitro derivative 5 had an MBC of 191μM against the Gram–ve Escherichia coli. The synthesized compounds were also tested for their anticancer activity against a HeLa cell line, where all the compounds showed better activity (IC50 values between 129μM and 340μM) than 5‐fluorouracil, a commonly known anticancer drug.  相似文献   

8.
Zhao‐Bing Xu  Jin Qu 《中国化学》2012,30(5):1133-1136
The efficient hydrolytic kinetic separation of trans/cis‐(R)‐(+)‐limonene oxides was realized in a 1:1 mixed solvent of water and 1,4‐dioxane without additional catalyst. Optically pure trans‐(R)‐(+)‐limonene oxide was recovered in high yield (77%).  相似文献   

9.
A novel chiral 1,5‐N,N‐bidentate ligand based on a spirocyclic pyrrolidine oxazoline backbone was designed and prepared, and it coordinates CuBr in situ to form an unprecedented catalyst that enables efficient oxidative cross‐coupling of 2‐naphthols. Air serves as an external oxidant and generates a series of C1‐symmetric chiral BINOL derivatives with high enantioselectivity (up to 99 % ee) and good yield (up to 87 %). This approach is tolerant of a broader substrates scope, particularly substrates bearing various 3‐ and 3′‐substituents. A preliminary investigation using one of the obtained C1‐symmetric BINOL products was used as an organocatalyst, exhibiting better enantioselectivity than the previously reported organocatalyst, for the asymmetric α‐alkylation of amino esters.  相似文献   

10.
An atom‐economic Pd0‐catalyzed synthesis of a series of pinacol‐type indolylboronates 3 from the corresponding bromoindole substrates 2 and pinacolborane (pinBH) as borylating agent was elaborated. The optimal catalyst system consisted of a 1 : 2 mixture of [Pd(OAc)2] and the ortho‐substituted biphenylphosphine ligand L‐3 (Scheme 4, Table). Our synthetic protocol was applied to the fast, preparative‐scale synthesis of 1‐substituted indolylboronates 3a – h in the presence of different functional groups, and at a catalyst load of only 1 mol‐% of Pd.  相似文献   

11.
An efficient and environmentally friendly procedure for the one-pot synthesis of tetrahydropyrimidinones from aldehydes, β-diketones and urea/thiourea by using magnesium bromide as an inexpensive and easily available catalyst under solvent-free conditions was described. Compared with the classical Biginelli reaction conditions, this new method has the advantage of good to excellent yields (74%-94%) and short reaction time (45-90 min). The structure of the Biginelli reaction product from β-diketone, salicylaldehyde and urea has been proposed to possess an oxygen-bridge by cyclization (intramolecular Michael-addition).  相似文献   

12.
An efficient methodology has been developed for the synthesis of quinoxalin‐2(1H)‐one derivatives of 2‐phenylimidazo[1,2‐a]pyridines by microwave‐irradiated Hinsberg heterocyclization between 2‐phenylimidazo[1,2‐a]pyridine‐3‐glyoxalates and o‐phenylenediamine using either montmorillonite K‐10 or Yb(OTf)3 as catalysts. Montmorillonite K‐10 was proven to be an efficient catalyst for the heterocyclization reaction between sterically hindered glyoxalate and o‐phenylenediamine only under microwave conditions. The use of Yb(OTf)3/tetrahydrofuran was also found to be an effective catalyst for the above chemical transformation among a series of Lewis acids screened under microwave conditions; however, comparatively lesser yields were obtained as compared with the use of montmorillonite K‐10.  相似文献   

13.
Chitosan sulfonic acid (CS–SO3H), a biodegradable green catalyst, was found to be an impressive system for one‐pot four‐component reaction of different aromatic aldehydes, 3‐acetylcoumarin, dimedone, and ammonium acetate leading to 7,7‐dimethyl‐2‐(2‐oxo‐2H‐chromen‐3‐yl)‐4‐aryl‐7,8‐dihydroquinolin‐5(6H)‐one under solvent‐free condition. This methodology produces diverse superiorities such as operational simplicity, short reaction time, and high yield. Further, the catalyst can be reused for four times without any noticeable decrease in the catalytic activity.  相似文献   

14.
(+)‐Tartaric acid‐catalyzed aminobromination of α,β‐unsaturated ketones, α,β‐unsaturated esters and simple olefins utilizing TsNH2/NBS as the nitrogen/halogen sources at room temperature without protection of inert gases achieved good yields (up to 92% yield) of vicinal haloamino products with excellent regio‐ and stereoselectivity, even just 10% of (+)‐tartaric acid was used as catalyst. The regio‐ and stereochemistry was unambiguously confirmed by X‐ray structural analysis of products 2b and 12c . The electron‐rich and deficient olefins show significant differences in activity to the aminobromination reaction and give the opposite regioselectivities. The 21 cases have been investigated which indicated that our protocol has the advantage of a large scope of olefins. Additionally, tartaric acid as catalyst has the advantage of avoiding any hazardous metals retained in products.  相似文献   

15.
A facile synthesis of trans isomers of 4‐aryl‐3‐methyl‐6‐oxo‐4,5,6,7‐tetrahydro ‐ 2H ‐ pyrazolo[3,4‐b]pyridine‐5‐carbonitriles via three‐component condensation reaction of an aldehyde, 3‐amino‐5‐methylpyrazole and ethyl cyanoacetate in acetonitrile has been developed under microwave irradiation. This one‐pot reaction proceeds without any catalyst in short times and gives the product in high selectivities and high yields.  相似文献   

16.
The 1‐{[(1H‐1,2,3‐Triazol‐4‐yl)methoxy]phenyl}‐1H‐pyrazolo[1,2‐b]phthalazine‐5,10‐dione derivatives 5 were synthesized by a simple and efficient method, i.e., by the four‐component, one‐pot condensation reaction of phthalohydrazide 4 , a (propargyloxy)benzaldehyde 1 , an active methylene compound 3 (malononitrile or ethyl cyanoacetate), and an azide 2 in the presence of Cu(OAc)2/sodium L ‐ascorbate as catalyst and 1‐methyl‐1H‐imidazolium trifluoroacetate ([Hmim](CF3COO)) as an ionic‐liquid medium in good to excellent yields (Scheme 1).  相似文献   

17.
A flexible approach, applicable on a gram scale, to chiral 2‐endo‐substituted 9‐oxabispidines was developed. The key intermediate, a cis‐configured 6‐aminomethylmorpholine‐2‐carbonitrile, was prepared from (R)‐3‐aminopropane‐1,2‐diol and 2‐chloroacrylonitrile. The 2‐endo substituent was introduced by Grignard addition, cyclization, and exo‐selective reduction, thus furnishing the enantiomerically pure bi‐ and tricyclic 9‐oxabispidines in 19–59 % yield. The CuCl2 complex of the tricyclic 9‐oxabispidine, which carries an 2‐endo,N‐anellated piperidine ring, is an excellent catalyst for enantioselective Henry reactions giving the S‐configured β‐nitro alcohols in 91–98 % ee (13 examples). Surprisingly, the analogous copper complexes of the bicyclic 9‐oxabispidines delivered the enantiocomplementary R‐configured products in 33–57 % ee. The respective transition states were discussed.  相似文献   

18.
A series of α‐(fluoro‐substituted phenyl)pyridines have been synthesized by means of a palladium‐catalyzed cross‐coupling reaction between fluoro‐substituted phenylboronic acid and 2‐bromopyridine or its derivatives. The reactivities of the phenylboronic acids containing di‐ and tri‐fluoro substituents with α‐pyridyl bromide were investigated in different catalyst systems. Unsuccessful results were observed in the Pd/C and PPh3 catalyst system due to phenylboronic acid containing electron‐withdrawing F atom(s). For the catalyst system of Pd(OAc)2/PPh3, the reactions gave moderate yields of 55% –80%, meanwhile, affording 10% –20% of dimerisation (self‐coupling) by‐products, but trace products were obtained in coupling with 2,4‐difluorophenylboronic acids because of steric hinderance. Pd(PPh3)4 was more reactive for boronic acids with sterically hindering F atom(s), and the coupling reactions gave good yields of 90% and 91% without any self‐coupling by‐product.  相似文献   

19.
An efficient approach for one‐pot synthesis of biologically active new spiro[chroman‐3,2′‐chromeno[2,3‐b ]furan]‐2,4,4′‐(3′H )‐trione derivatives from tandem Knoevenagel–Michel addition–heterocyclization reaction between 4‐hydroxycumarin and various aldehydes in the presence of N,N,N ,N ′‐tetrabromobenzene‐1,3‐disulfonamide as an efficient catalyst at ambient temperature under solvent‐free conditions was reported. Simple procedure, high yields, easy work‐up, and reusability of the catalyst are the significant advantages of this process.  相似文献   

20.
Silica‐supported chitosan‐platinum‐iron complex (SiO2‐CS‐Pt‐Fe) is prepared by a simple method from silica, chitosan, H2PtCl6 · 6H2O and FeCl3. It has been found to be an effective chiral catalyst for the asymmetric hydrogenation of 2‐hexanone to give (S)‐(+)‐2‐hexanol and methyl acetoacetate to give methyl‐(S)‐(+)‐3‐hydroxybutyrate in 85.4 and 75.0% optical yields, respectively, if a proper content of Pt and Fe in SiO2‐CS‐Pt‐Fe complex and appropriate reaction conditions are selected at room temperature and under 1 atm H2. The catalyst could be reused several times without any remarkable change in optical catalytic activity. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号