首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The development of efficient blue materials has been a continuous research topic in the field of organic light‐emitting diodes (OLEDs). In this paper, three aggregation‐induced emission enhancement active blue emitters, PIAnTPE, TPAAnTPE and CzAnTPE, are successfully synthesized by attaching a triphenylethylene unit and phenanthroimidazole/triphenylamine/carbazole moieties to the 9,10‐positions of anthracene, respectively. The three compounds exhibit good thermal stabilities, appropriate for the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels and display high photoluminescence quantum yields (PLQYs) of 65, 70 and 46 % in the solid state. Non‐doped blue devices using PIAnTPE, TPAAnTPE and CzAnTPE as the emitting layers show good electroluminescent performances, with the maximum external quantum efficiencies (EQEs) of 4.46, 4.13 and 4.04 %, respectively. More importantly, EQEs of all the three devices can be still retained when the luminescence reaches 1000 cd m?2, exhibiting quite small efficiency roll‐offs in the non‐doped OLEDs.  相似文献   

3.
Organic light‐emitting diodes (OLEDs) have been greatly developed in recent years owing to their abundant advantages for full‐color displays and general‐purpose lightings. Blue emitters not only provide one of the primary colors of the RGB (red, green and blue) display system to reduce the power consumption of OLEDs, but are able able to generate light of all colors, including blue, green, red, and white by energy transfer processes in devices. However, it remains a challenge to achieve high‐performance blue electroluminescence, especially for nondoped devices. In this paper, we report a blue light emitting molecule, DPAC‐AnPCN, which consists of 9,9‐diphenyl‐9,10‐dihydroacridine and p‐benzonitrile substituted anthracene moieties. The asymmetrically decoration on anthracene with different groups on its 9 and 10 positions combines the merits of the respective constructing units and endows DPAC‐AnPCN with pure blue emission, high solid‐state efficiency, good thermal stability and appropriate HOMO and LUMO energy levels. Furthermore, DPAC‐AnPCN can be applied in a nondoped device to effectively reduce the fabrication complexity and cost. The nondoped device exhibits pure blue electroluminescence (EL) locating at 464 nm with CIE coordinates of (0.15, 0.15). Moreover, it maintains high efficiency at relatively high luminescence. The maximum external quantum efficiency (EQE) reaches 6.04 % and still remains 5.31 % at the luminance of 1000 cd m?2 showing a very small efficiency roll‐off.  相似文献   

4.
Triarylboron compounds have attracted much attention, and found wide use as functional materials because of their electron‐accepting properties arising from the vacant p orbitals on the boron atoms. In this study, we design and synthesize new donor–acceptor triarylboron emitters that show thermally activated delayed fluorescence. These emitters display sky‐blue to green emission and high photoluminescence quantum yields of 87–100 % in host matrices. Organic light‐emitting diodes using these emitting molecules as dopants exhibit high external quantum efficiencies of 14.0–22.8 %, which originate from efficient up‐conversion from triplet to singlet states and subsequent efficient radiative decay from singlet to ground states.  相似文献   

5.
Aggregation‐induced delayed fluorescence (AIDF) can be regarded as a special case of aggregation‐induced emission (AIE). Luminogens with AIDF can simultaneously emit strongly in solid state and fully utilize the singlet and triplet excitons in organic light‐emitting diodes (OLEDs). In this work, two new AIDF luminogens, DMF‐BP‐DMAC and DPF‐BP‐DMAC, with an asymmetric D–A–D′ structure, are designed and synthesized. The characteristics of both luminogens are systematically investigated, including single crystal structures, theoretical calculations, photophysical properties and thermal stabilities. Inspired by their AIDF nature, the green‐emission non‐doped OLEDs based on them are fabricated, which afford good electroluminescence performances, with low turn‐on voltages of 2.8 V, high luminance of 52560 cd m?2, high efficiencies of up to 14.4 %, 42.3 cd A?1 and 30.2 lm W?1, and very small efficiency roll‐off. The results strongly indicate the bright future of non‐doped OLEDs on the basis of robust AIDF luminogens.  相似文献   

6.
A series of starburst oligomers (T1–T3) that contained a fully diarylmethene‐bridged triphenylamine core and oligofluorene arms were designed and synthesized through Suzuki cross‐coupling reactions. Their thermal, photophysical, and electrochemical properties were also investigated. These materials showed high glass transition, in the range of 123–129 °C, and good film‐forming abilities. They displayed deep‐blue emission both in solution and as thin films. Solution‐processed devices based on these oligomers exhibited highly efficient deep‐blue electroluminescence and the device performances were significantly enhanced with the extension of the oligofluorene arms. The double‐layered device that contained T3 as an emitter showed a maximum current efficiency of 3.83 cd A?1 and a maximum external quantum efficiency of 4.19 % with CIE coordinates of (0.16, 0.09), which are among the highest values for undoped deep‐blue OLEDs that are based on solution‐processable starburst oligomers.  相似文献   

7.
8.
Enlightening the memory : The integration of a crosslinkable photochromic dithienylperfluorocyclopentene (DTE) into organic light‐emitting diodes (OLED) allows for the individualization of the emissive area of the OLED device, for example, for signage applications. The operation principle is based on switching the injection barrier for holes (positive charge carriers). Very large ON/OFF ratios of up to 3000 for current as well as electroluminescence have been achieved.

  相似文献   


9.
Metal‐containing nanomaterials have attracted widespread attention in recent years due to their physicochemical, light‐scattering and plasmonic properties. By introducing different kinds and different structures of metal‐containing nanomaterials into organic light‐emitting diodes (OLEDs), the optical properties of the devices can be tailored, which can effectively improve the luminous efficiency of OLEDs. In this review, the fundamental knowledge of OLEDs and metallic nanomaterials were firstly introduced. Then we overviewed the recent development of the optimization of OLEDs through introducing different kinds of metal‐containing nanomaterials.  相似文献   

10.
Recently, organic light‐emitting diodes (OLEDs) employing thermally activated delayed fluorescence (TADF) materials have aroused huge attention in both academia and industry. Compared with fluorescent and phosphorescent materials, TADF materials can theoretically capture 100 % excitons without incorporating noble metals, making them effective emitters and hosts for OLEDs simultaneously. Here, in this review, our recent works on mechanisms and materials of high performance TADF‐sensitized phosphorescent (TSP) OLEDs, TADF‐sensitized fluorescent (TSF) OLEDs and TADF‐sensitized TADF (TST) OLEDs are summarized. Finally, we propose the outlook for the further development and application of TADF‐sensitized OLEDs.  相似文献   

11.
Multifunctional donor–acceptor compound 4,4′‐bis(dibenzothiophene‐S,S‐dioxide‐2‐yl)triphenylamine ( DSTPA ) was obtained by linking a strongly electron‐withdrawing core and a strongly electron‐donating core with a biphenyl bridge in linear spatial alignment. DSTPA not only has suitable HOMO and LUMO levels for easily accepting both holes and electrons, it was also demonstrated to have a high fluorescence quantum yield of 0.98 and a high triplet energy level of 2.39 eV. Versatile applications of DSTPA for bipolar transport, green fluorescent emission, and sensitizing a red phosphor were systematically investigated in a series of multi‐ and single‐layer organic light‐emitting devices. In traditional multilayer devices, it shows excellent performance both in an undoped fluorescent device (used as a green emitter and achieving maximum current and power efficiencies (CE and PE) of 12.6 cd A?1 and 9.4 Lm W?1, respectively) and in a red phosphorescent device (used as a host and achieving maximum CE and PE of 26.4 cd A?1 and 26.3 Lm W?1, respectively). Furthermore, DSTPA was also simultaneously used as an emitter, a hole transporter, and an electron transporter in a single‐layer device showing CE and PE of 5.1 cd A?1 and 4.7 Lm W?1, respectively. A single‐layer red phosphorescent device with efficiencies of 11.7 cd A?1 and 12.6 Lm W?1 was obtained by doping DSTPA with a red phosphor. The performances of all of the devices in this work are comparable to the best of their corresponding classes in the literature.  相似文献   

12.
It is important to balance holes and electrons in the emitting layer of organic light‐emitting diodes to maximize recombination efficiency and the accompanying external quantum efficiency. Therefore, the host materials of the emitting layer should transport both holes and electrons for the charge balance. From this perspective, bipolar hosts have been popular as the host materials of thermally activated delayed fluorescent devices and phosphorescent organic light‐emitting diodes. In this review, we have summarized recent developments of bipolar hosts and suggested perspectives of host materials for organic light‐emitting diodes.  相似文献   

13.
The electron positive boron atom usually does not contribute to the frontier orbitals for several lower‐lying electronic transitions, and thus is ideal to serve as a hub for the spiro linker of light‐emitting molecules, such that the electron donor (HOMO) and acceptor (LUMO) moieties can be spatially separated with orthogonal orientation. On this basis, we prepared a series of novel boron complexes bearing electron deficient pyridyl pyrrolide and electron donating phenylcarbazolyl fragments or triphenylamine. The new boron complexes show strong solvent‐polarity dependent charge‐transfer emission accompanied by a small, non‐negligible normal emission. The slim orbital overlap between HOMO and LUMO and hence the lack of electron correlation lead to a significant reduction of the energy gap between the lowest lying singlet and triplet excited states (ΔET‐S) and thereby the generation of thermally activated delay fluorescence (TADF).  相似文献   

14.
Long live the OLED! Rational design and synthesis of IrIII complexes bearing two cyclometalated ligands (C N) and one 2‐(diphenylphosphino)phenolate chelate (P O) as well as the corresponding IrIII derivatives with only one (C N) ligand and two P O chelates are reported. According to the observed photophysical data, a P O ligand is found to be able to fine‐tune the light‐emitting electronic transition of these complexes.

  相似文献   


15.
16.
A blue‐emitting iridium dendrimer, namely B‐G2 , has been successfully designed and synthesized with a second‐generation oligocarbazole as the dendron, which is covalently attached to the emissive tris[2‐(2,4‐difluorophenyl)‐pyridyl]iridium(III) core through a nonconjugated link to form an efficient self‐host system in one dendrimer. Unlike small molecular phosphors and other phosphorescent dendrimers, B‐G2 shows a continuous enhancement in the device efficiency with increasing doping concentration. When using neat B‐G2 as the emitting layer, the nondoped device is achieved without loss in efficiency, thus giving a state‐of‐art EQE as high as 15.3 % (31.3 cd A?1, 28.9 lm W?1) along with CIE coordinates of (0.16, 0.29).  相似文献   

17.
A novel isoquinoline‐containing C^N^C ligand and its phosphorescent triphenylamine‐based alkynylgold(III) dendrimers have been synthesized. These alkynylgold(III) dendrimers serve as phosphorescent dopants in the fabrication of efficient solution‐processable organic light‐emitting devices (OLEDs). The photophysical, electrochemical, and electroluminescence properties were studied. A saturated red emission with CIE coordinates of (0.64, 0.36) and a high EQE value of 3.62 % were achieved. Unlike other red‐light‐emitting iridium(III) dendrimers, a low turn‐on voltage of less than 3 V and a reduced efficiency roll‐off at high current densities were observed; this can be accounted for by the enhanced carrier transporting ability and the relatively short lifetimes in the high‐generation dendrimers. This class of alkynylgold(III) dendrimers are promising candidates as phosphorescent dopants in the fabrication of solution‐processable OLEDs.  相似文献   

18.
19.
Over the last decades, fluorescent proteins (FPs) have been extensively employed for imaging and tracing in cell biology and medicine. However, their application for lighting devices like light‐emitting diodes (LEDs) and lasers has recently started. The interest of FPs is the result of their good photoluminescence features (high emission efficiency with a narrow spectrum and a high photon‐flux saturation), good photostability, sustainable production by bacteria, and eco‐friendly recycling. Their low stability at high temperatures as well as the need for an aqueous environment have, however, strongly limited their use in optoelectronics. This has recently been circumvented with new coating systems that are paving the way for the entrance of FPs into the LED field. In this Minireview, we summarize the first steps taken by a few groups towards the development of bio‐hybrid white LEDs (Bio‐HWLEDs) with a focus on using FPs as color down‐converters, highlighting the state of the art and challenges associated with this emerging field.  相似文献   

20.
To date, blue dual fluorescence emission (DFE) has not been realized because of the limited choice of chemical moieties and severe geometric deformation of the DFE emitters leading to strong intramolecular charge transfer (ICT) with a large Stokes shift in excited states. Herein, an emitter (1′r,5′R,7′S)‐10‐(4‐(4,6‐diphenyl‐1,3,5‐triazin‐2‐yl)phenyl)‐10H‐spiro [acridine‐9,2′‐adamantane] (a‐DMAc‐TRZ) containing a novel adamantane‐substituted acridine donor is reported, which exhibits unusual blue DFE. The introduction of the rigid and bulky adamantane moiety not only suppressed the geometry relaxation in excited state, but also induced the formation of quasi‐axial conformer (QAC) and quasi‐equatorial conformer (QEC) geometries, leading to deep‐blue conventional fluorescence and sky‐blue thermally activated delayed fluorescence (TADF). The resulting organic light‐emitting diodes (OLEDs) achieved a maximum external quantum efficiency (EQE) of about 29 %, which is the highest reported for OLEDs based on dual‐conformation emitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号