首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(ADP‐ribose)polymerase‐1 (PARP1) is a BRCT‐containing enzyme (BRCT=BRCA1 C‐terminus) mainly involved in DNA repair and damage response and a validated target for cancer treatment. Small‐molecule inhibitors that target the PARP1 catalytic domain have been actively pursued as anticancer drugs, but are potentially problematic owing to a lack of selectivity. Compounds that are capable of disrupting protein–protein interactions of PARP1 provide an alternative by inhibiting its activities with improved selectivity profiles. Herein, by establishing a high‐throughput microplate‐based assay suitable for screening potential PPI inhibitors of the PARP1 BRCT domain, we have discovered that (±)‐gossypol, a natural product with a number of known biological activities, possesses novel PARP1 inhibitory activity both in vitro and in cancer cells and presumably acts through disruption of protein–protein interactions. As the first known cell‐permeable small‐molecule PPI inhibitor of PAPR1, we further established that (?)‐gossypol was likely the causative agent of PARP1 inhibition by promoting the formation of a 1:2 compound/PARP1 complex by reversible formation of a covalent imine linkage.  相似文献   

2.
Among various protein posttranslational modifiers, poly-ADP-ribose polymerase 1 (PARP1) is a key player for regulating numerous cellular processes and events through enzymatic attachments of target proteins with ADP-ribose units donated by nicotinamide adenine dinucleotide (NAD+). Human PARP1 is involved in the pathogenesis and progression of many diseases. PARP1 inhibitors have received approvals for cancer treatment. Despite these successes, our understanding about PARP1 remains limited, partially due to the presence of various ADP-ribosylation reactions catalyzed by other PARPs and their overlapped cellular functions. Here we report a synthetic NAD+ featuring an adenosyl 3′-azido substitution. Acting as an ADP-ribose donor with high activity and specificity for human PARP1, this compound enables labelling and profiling of possible protein substrates of endogenous PARP1. It provides a unique and valuable tool for studying PARP1 in biology and pathology and may shed light on the development of PARP isoform-specific modulators.

An analogue of nicotinamide adenine dinucleotide (NAD+) featuring an azido group at 3′-OH of adenosine moiety is found to possess high specificity for human PARP1-catalyzed protein poly-ADP-ribosylation.  相似文献   

3.
BRCTs are phosphoserine‐binding domains found in proteins involved in DNA repair, DNA damage response and cell cycle regulation. BRCA1 is a BRCT domain‐containing, tumor‐suppressing protein expressed in the cells of breast and other human tissues. Mutations in BRCA1 have been found in ca. 50 % of hereditary breast cancers. Cell‐permeable, small‐molecule BRCA1 inhibitors are promising anticancer agents, but are not available currently. Herein, with the assist of microarray‐based platforms, we have discovered the first cell‐permeable protein–protein interaction (PPI) inhibitors against BRCA1. By targeting the (BRCT)2 domain, we showed compound 15 a and its prodrug 15 b inhibited BRCA1 activities in tumor cells, sensitized these cells to ionizing radiation‐induced apoptosis, and showed synergistic inhibitory effect when used in combination with Olaparib (a small‐molecule inhibitor of poly‐ADP‐ribose polymerase) and Etoposide (a small‐molecule inhibitor of topoisomerase II). Unlike previously reported peptide‐based PPI inhibitors of BRCA1, our compounds are small‐molecule‐like and could be directly administered to tumor cells, thus making them useful for future studies of BRCA1/PARP‐related pathways in DNA damage and repair response, and in cancer therapy.  相似文献   

4.
Intracellular ADP-ribosyltransferases catalyze mono- and poly-ADP-ribosylation and affect a broad range of biological processes. The mono-ADP-ribosyltransferase PARP10 is involved in signaling and DNA repair. Previous studies identified OUL35 as a selective, cell permeable inhibitor of PARP10. We have further explored the chemical space of OUL35 by synthesizing and investigating structurally related analogs. Key synthetic steps were metal-catalyzed cross-couplings and functional group modifications. We identified 4-(4-cyanophenoxy)benzamide and 3-(4-carbamoylphenoxy)benzamide as PARP10 inhibitors with distinct selectivities. Both compounds were cell permeable and interfered with PARP10 toxicity. Moreover, both revealed some inhibition of PARP2 but not PARP1, unlike clinically used PARP inhibitors, which typically inhibit both enzymes. Using crystallography and molecular modeling the binding of the compounds to different ADP-ribosyltransferases was explored regarding selectivity. Together, these studies define additional compounds that interfere with PARP10 function and thus expand our repertoire of inhibitors to further optimize selectivity and potency.  相似文献   

5.
6.
Sphingomyelin synthase (SMS) produces sphingomyelin and diacylglycerol from ceramide and phosphatidylcholine. It plays an important role in cell survival and apoptosis, inflammation, and lipid homeostasis, and therefore has been noticed in recent years as a novel potential drug target. In this study, we combined homology modeling, molecular docking, molecular dynamics simulation, and normal mode analysis to derive a three‐dimensional structure of human sphingomyelin synthase (hSMS1) in complex with sphingomyelin. Our model provides a reasonable explanation on the catalytic mechanism of hSMS1. It can also explain the high selectivity of hSMS1 towards phosphocholine and sphingomyelin as well as some other known experimental results about hSMS1. Moreover, we also derived a complex model of D609, the only known small‐molecule inhibitor of hSMS1 so far. Our hSMS1 model may serve as a reasonable structural basis for the discovery of more effective small‐molecule inhibitors of hSMS1.  相似文献   

7.
Nowadays, different approaches have been pursued with the intent to develop sulfonamide-like carbonic anhydrase inhibitors that possess better selectivity profiles toward the different human isoforms of the enzyme. Here, we used conventional 3D-QSAR methods, including comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and Topomer CoMFA, to construct three-dimensional quantitative structure-activity relationship (3D-QSAR) models for benzenesulfonamide derivatives as human carbonic anhydrase (hCA) II/IX inhibitors. The theoretical models had good reliability (R2>0.75) and predictability (Q2>0.55), and the contour maps could graphically present the contributions of the force fields for activity and identify the structural divergence between human carbonic anhydrase II inhibitors and human carbonic anhydrase IX inhibitors. Consequently, we explored the selectivity of inhibitor for human carbonic anhydrase II and IX through molecular docking, and the difference of activity coincides with the potential binding mode well. According to the results of the predicted values and the molecule docking, we found that the inhibitors published in the literature had stronger inhibition on the hCA IX; based on the theoretical models, we designed seven new compounds with good potential activity and reasonably good ADMET profile, which could selectively inhibit hCA IX. Molecular Dynamics Simulation showed that newly-designed compound D7 had good selectivity on hCA IX. The findings from 3D-QSAR and docking studies maybe helpful in the rational drug design of isoform-selective inhibitors.  相似文献   

8.
An affinity‐selection study using size exclusion chromatography (SEC) combined with off‐line electrospray ionization mass spectrometry (ESI‐MS) was performed on libraries of peptidic α‐ketoamide inhibitors directed against the hepatitis C virus (HCV) NS3 protease. A limiting amount of HCV NS3 protease (25 µM ) was incubated with equimolar amounts (100 µM ) of 49 reversible mechanism‐based ketoamide inhibitors, previously grouped into seven sets to ensure clearly distinguishable mass differences of the enzyme‐inhibitor complexes (>10 Da). The unbound compounds were separated rapidly from the protease and the protease‐inhibitor complexes by SEC spin columns. The eluate of the SEC was immediately analyzed by direct‐infusion ESI‐MS. An enzyme‐inhibitor complex, with a molecular mass corresponding to the NS3 protease binding to the preferred inhibitor, SCH212986, was the only molecular species detected. By increasing the molar ratio of HCV NS3 protease to inhibitors to 1:2 while keeping the inhibitors' concentration constant, the complex of the second most tightly bound inhibitor, SCH215426, was also identified. Although the potencies of these inhibitors were virtually un‐measurable by kinetic assays, a rank order of CVS4441 > SCH212986 > SCH215426 was deduced for their inhibition potencies by direct competition experiment with CVS4441 ( M ). As discussed in the article, through judicious application of this strategy, even large libraries of fairly weak, reversible and slow‐binding inhibitors could be rapidly screened and rank ordered to provide critical initial structure‐activity insights. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Focal adhesion kinase (FAK) has been identified as a potential therapeutic target for the treatment of metastatic cancers. Herein we describe the design, synthesis and optimization of a direct activity sensor for FAK and its application to screening FAK inhibitors. We find that the position of the sensing moiety, a phosphorylation-sensitive sulfonamido-oxine fluorophore, can dramatically influence the performance of peptide sensors for FAK. Real-time fluorescence activity assays using an optimized sensor construct, termed FAKtide-S2, are highly reproducible (Z' = 0.91) and are capable of detecting as little as 1 nM recombinant FAK. Utilizing this robust assay format, we define conditions for the screening of FAK inhibitors and demonstrate the utility of this platform using a set of well-characterized small molecule kinase inhibitors. Additionally, we provide the selectivity profile of FAKtide-S2 among a panel of closely related enzymes, identifying conditions for selectively monitoring FAK activity in the presence of off-target enzymes. In the long term, the chemosensor platform described in this work can be used to identify novel FAK inhibitor scaffolds and potentially assess the efficacy of FAK inhibitors in disease models.  相似文献   

10.
Chao Zhang 《Tetrahedron》2007,63(26):5832-5838
The ability to inhibit any protein kinase of interest with a small molecule is enabled by a combination of genetics and chemistry. Genetics is used to modify the active site of a single kinase to render it distinct from all naturally occurring kinases. Next, organic synthesis is used to develop a small molecule, which does not bind to wild-type kinases but is a potent inhibitor of the engineered kinase. This approach, termed chemical genetics, has been used to generate highly potent mutant kinase-specific inhibitors based on a pyrazolopyrimidine scaffold. Here, we asked if the selectivity of the resulting pyrazolopyrimidines could be improved, as they inhibit several wild-type kinases with low-micromolar IC50 values. Our approach to improve the selectivity of allele-specific inhibitors was to explore a second kinase inhibitor scaffold. A series of 6,9-disubstituted purines was designed, synthesized, and evaluated for inhibitory activity against several kinases in vitro and in vivo. Several purines proved to be potent inhibitors against the analog-sensitive kinases and exhibited greater selectivity than the existing pyrazolopyrimidines.  相似文献   

11.
Kinases are involved in a variety of diseases such as cancer, diabetes, and arthritis. In recent years, many kinase small molecule inhibitors have been developed as potential disease treatments. Despite the recent advances, selectivity remains one of the most challenging aspects in kinase inhibitor design. To interrogate kinase selectivity, a panel of 45 kinase assays has been developed in-house at Pfizer. Here we present an application of in silico quantitative structure activity relationship (QSAR) models to extract rules from this experimental screening data and make reliable selectivity profile predictions for all compounds enumerated from virtual libraries. We also propose the construction of R-group selectivity profiles by deriving their activity contribution against each kinase using QSAR models. Such selectivity profiles can be used to provide better understanding of subtle structure selectivity relationships during kinase inhibitor design.  相似文献   

12.
The clinical success of the Bcr-Abl tyrosine kinase inhibitor Gleevec((R)) and the recent clinical approval of a number of small molecule drugs that target protein kinases have intensified the search for novel protein kinase inhibitors. Since most small molecule kinase inhibitors target the highly conserved ATP-binding pocket of this enzyme family, the target selectivity of these molecules is a major concern. Due to the large size of the human kinome, it is a formidable challenge to determine the absolute specificity of a given protein kinase inhibitor, but recent technological developments have made substantial progress in achieving this goal. This review summarizes some of the most recent experimental techniques that have been developed for the determination of protein kinase inhibitor selectivity. Special emphasis is placed on the results of these screens and the general insights that they provide into kinase inhibitor target selectivity.  相似文献   

13.
Molecules of the title compound, C16H14N2O, a potential plant‐growth regulator, are linked into chains by intermolecular C=O...H—N hydrogen bonds. These chains are weakly interconnected by π–π stacking interactions to form a three‐dimensional framework. A comparison of the geometric parameters of the title molecule and several related benzimidazoles and pyrrolidones is presented.<!?tpb=22pt>  相似文献   

14.
In this study, calix[4]arene derivatives (1114) bearing a single nucleobase (adenine, thymine, cytosine or guanine) were synthesised via click chemistry. The complexation ability of the synthesised derivatives with alkali metal ions was measured using MALDI-TOF mass spectrometry, and their molecular assembly in CDCl3 was determined using 1H NMR. Calix[4]arene derivatives (1114) formed 1:1 complexes with all alkali metal ions and the rank order for the complexation selectivity was Rb+ > Cs+ > K+ ? Na+ > Li+. The attachment of nucleobase at the upper rim of calix[4]arene had little effect on its complexation selectivity for alkali metal ions. Thymine-, adenine- and guanine-calix[4]arenes formed self-assembled structures in CDCl3 via base–base interactions. In addition, adenine-calix[4]arene (11) bound to thymine-calix[4]arene (12) to form a discrete species via Hoogsteen hydrogen bonding.  相似文献   

15.
A novel small‐molecule boron(III)‐containing donor–acceptor compound has been synthesized and employed in the fabrication of solution‐processable electronic resistive memory devices. High ternary memory performances with low turn‐on (VTh1=2.0 V) and distinct threshold voltages (VTh2=3.3 V), small reading bias (1.0 V), and long retention time (>104 seconds) with a large ON/OFF ratio of each state (current ratio of “OFF”, “ON1”, and “ON2”=1:103:106) have been demonstrated, suggestive of its potential application in high‐density data storage. The present design strategy provides new insight in the future design of memory devices with multi‐level transition states.  相似文献   

16.
Post-translation modification of microtubules is associated with many diseases like cancer. Alpha Tubulin Acetyltransferase 1 (ATAT1) is a major enzyme that acetylates ‘Lys-40’ in alpha-tubulin on the luminal side of microtubules and is a drug target that lacks inhibitors. Here, we developed pharmacophore anchor models of ATAT1 which were constructed statistically using thousands of docked compounds, for drug design and investigating binding mechanisms. Our models infer the compound moiety preferences with the physico-chemical properties for the ATAT1 binding site. The results from the pharmacophore anchor models show the three main sub-pockets, including S1 acetyl site, S2 adenine site, and S3 diphosphate site with anchors, where conserved moieties interact with respective sub-pocket residues in each site and help in guiding inhibitor discovery. We validated these key anchors by analyzing 162 homologous protein sequences (>99 species) and over 10 structures with various bound ligands and mutations. Our results were consistent with previous works also providing new interesting insights. Our models applied in virtual screening predicted several ATAT1 potential inhibitors. We believe that our model is useful for future inhibitor discovery and for guiding lead optimization.  相似文献   

17.
A selective, nonchelation‐assisted methylation of arenes has been developed. The overall transformation, which combines a C?H functionalization reaction with a nickel‐catalyzed cross‐coupling, offers rapid access to methylated arenes with high para selectivity. The reaction is amenable to late‐stage methylation of small‐molecule pharmaceuticals.  相似文献   

18.
We report a novel electron‐rich molecule based on 3,4‐ethylenedioxythiophene (H101). When used as the hole‐transporting layer in a perovskite‐based solar cell, the power‐conversion efficiency reached 13.8 % under AM 1.5G solar simulation. This result is comparable with that obtained using the well‐known hole transporting material 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD). This is the first heterocycle‐containing material achieving >10 % efficiency in such devices, and has great potential to replace the expensive spiro‐OMeTAD given its much simpler and cheaper synthesis.  相似文献   

19.
Although a monoclonal antibody targeting the multifunctional ectoenzyme CD38 is an FDA-approved drug, few small molecule inhibitors exist for this enzyme that catalyzes inter alia the formation and metabolism of the N1-ribosylated, Ca2+-mobilizing, second messenger cyclic adenosine 5′-diphosphoribose (cADPR). N1-Inosine 5′-monophosphate (N1-IMP) is a fragment directly related to cADPR. 8-Substituted-N1-IMP derivatives, prepared by degradation of cyclic parent compounds, inhibit CD38-mediated cADPR hydrolysis more efficiently than related cyclic analogues, making them attractive for inhibitor development. We report a total synthesis of the N1-IMP scaffold from adenine and a small initial compound series that facilitated early delineation of structure-activity parameters, with analogues evaluated for inhibition of CD38-mediated hydrolysis of cADPR. The 5′-phosphate group proved essential for useful activity, but substitution of this group by a sulfonamide bioisostere was not fruitful. 8-NH2-N1-IMP is the most potent inhibitor (IC50 = 7.6 μM) and importantly HPLC studies showed this ligand to be cleaved at high CD38 concentrations, confirming its access to the CD38 catalytic machinery and demonstrating the potential of our fragment approach.  相似文献   

20.

Background  

Protein kinase D (PKD) has been implicated in a wide range of cellular processes and pathological conditions including cancer. However, targeting PKD therapeutically and dissecting PKD-mediated cellular responses remains difficult due to lack of a potent and selective inhibitor. Previously, we identified a novel pan-PKD inhibitor, CID755673, with potency in the upper nanomolar range and high selectivity for PKD. In an effort to further enhance its selectivity and potency for potential in vivo application, small molecule analogs of CID755673 were generated by modifying both the core structure and side-chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号