首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly sensitive, selective and rugged method has been described for the quantification of metronidazole (MTZ) in human plasma by liquid chromatography–tandem mass spectrometry using metronidazole‐d4 as the internal standard (IS). The analyte and the IS were extracted from 100 μL plasma by liquid–liquid extraction. The clear samples obtained were chromatographed on an ACE C18 (100 × 4.6 mm, 5 μm) column using acetonitrile and 10.0 mm ammonium formate in water, pH 4.00 (80:20, v/v) as the mobile phase. A triple quadrupole mass spectrometer system equipped with turbo ion spray source and operated in multiple reaction monitoring mode was used for the detection and quantification of MTZ. The calibration range was established from 0.01 to 10.0 μg/mL. The results of validation testing for precision and accuracy, selectivity, matrix effects, recovery and stability complied with current bioanalytical guidelines. A run time of 3.0 min permitted analysis of more than 300 samples in a day. The method was applied to a bioequivalence study with 250 mg MTZ tablet formulation in 24 healthy Indian males.  相似文献   

2.
Celosin A (CA), a natural compound isolated from Celosia argentea L., has been shown significant hepatoprotective effect on AHNP‐induced liver injury. This study described a rapid and sensitive ultra‐high‐pressure liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) assay for determination of CA in rat plasma. Methanol‐mediated precipitation was used for sample pretreatment. Chromatographic separation was achieved on a T3 column with gradient elution using water and acetonitrile as mobile phase. Determination was obtained using an electrospray ionization source in negative selected reaction monitoring mode at the transitions of m/z 793.3 → m/z 661.2 and m/z 955.6 → m/z 793.2 for CA and IS, respectively. The assay was linear over the concentration range 0.25–2500 ng/mL (r > 0.995) with a lowest limit of quantification (LLOQ) of 0.25 ng/mL. The intra‐ and inter‐day precisions (RSD) were 1.65–9.84 and 2.46–13.49%, respectively, while accuracy (RR) ranged from 96.21 to 99.45%, respectively. The recovery ranged from 95.09 to 102.22% and the matrix effect from 98.29 to 100.13%. The analyte was stable under the tested storage conditions. The method has been successfully applied to a preclinical pharmacokinetic study in rats after a single intravenous (2 mg/kg) or oral (50 mg/kg) administration. The oral bioavailability of CA was ~1.94%; in addition, there was no difference between male and female rats. This is the first time of the use of an UHPLC–MS/MS method for determination of CA concentration in rat plasma and for evaluation of its pharmacokinetic behavior.  相似文献   

3.
A novel and sensitive LC–MS/MS method was developed and validated for determination of sofosbuvir (SF) using eplerenone as an internal standard. The Xevo TQD LC–MS/MS was operated under the multiple‐reaction monitoring mode using electrospray ionization. Extraction with tert‐butyl methyl ether was used in sample preparation. The prepared samples were chromatographed on Acquity UPLC BEH C18 (50 × 2.1 mm, 1.7 μm) column by pumping 0.1% formic acid and acetonitrile in an isocratic mode at a flow rate of 0.35 mL/min. Method validation was performed as per the US Food and Drug Administration guidelines and the standard curves were found to be linear in the range of 0.25–3500 ng/mL for SF. The intra‐ and inter‐day precision and accuracy results were within the acceptable limits. A very short run time of 1 min made it possible to analyze more than 500 human plasma samples per day. A very low quantification limit of SF allowed the applicability of the developed method for determination of SF in a bioequivalence study in human volunteers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
In the present study, a simple, rapid and reliable ultrahigh‐performance liquid chromatography–tandem mass spectrometric (UHPLC–MS/MS) method was developed and validated to determine simultaneously epalrestat (EPA) and puerarin (PUE) in rat plasma for evaluation of the pharmacokinetic interaction of these two drugs. Both the analytes and glipizide (internal standard, IS) were extracted using a protein precipitation method. The separation was performed on a C18 reversed phase column using acetonitrile and 5 mmol/L ammonium acetate in water as the mobile phase with a gradient elution program. The analytes, including IS, were quantified with multiple reaction monitoring under negative ionization mode. The optimized mass transition ion pairs (m /z ) were 318.1 → 274.0 for EPA, 415.1 → 266.9 for PUE and 444.2 → 166.9 for IS. The linear calibration curves for EPA and PUE were obtained in the concentration ranges of 10–4167 and 20–8333 ng/mL, respectively (r > 0.99). The current method was successfully applied for the pharmacokinetic interaction study in rats following administration of EPA and PUE alone or co‐administration (EPA 15 mg/kg, oral; PUE 30 mg/kg, intravenous). The results showed that the combination of EPA and PUE could increase t 1/2 of EPA and reduce T max of EPA. These changes indicated that EPA and PUE might cause drug–drug interactions when co‐administrated.  相似文献   

5.
Through blocking the cardiac persistent sodium current, riluzole has the potential to prevent myocardial damage post cardiac bypass surgery. A sensitive UHPLC–MS/MS method was developed and validated for quantitation of riluzole and 5‐methoxypsoralen in human plasma and myocardial tissue homogenate using a liquid–liquid extraction with dichloromethane. The chromatographic separation was achieved using Shimadzu Shim‐pack XR‐ODS III, 2.0 × 50 mm, 1.6 μm column with a gradient mobile phase comprising methanol and ammonium acetate buffer pH 3.6 in purified water. The analyte and internal standard were separated within 3.5 min. Riluzole quantitation was achieved using the mass transitions of 235–138 for riluzole and 217–156 for 5‐methoxypsoralen. The method was linear for riluzole plasma concentrations from 0.2 to 500 ng/mL and myocardial tissue homogenate concentrations from 0.2 to 100 ng/mL. The method developed was successfully applied to a clinical study for patients receiving riluzole while undergoing cardiac bypass surgery.  相似文献   

6.
A rapid and sensitive liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) method to determine clonidine in human plasma was developed and fully validated. Sample preparation was involved an one‐step extraction with diethyl ether. Donepezil was employed as the internal standard (IS). Chromatographic separation was performed on a Hypersil BDS C18 column (i.d. 2.1 × 50 mm, particle size 3μm) with a mobile phase of methanol–water (containing 0.1% formic acid; 60:40, v/v) at a flow rate of 200 μL/min. The peaks were detected by mass spectrometry using the electrospray ion source in selected reaction monitoring mode. The extraction recovery was 72.53–85.25%. The method was found to be linear in a concentration range of 0.02–6.00 ng/mL and the lower limit of quantification was 0.02 ng/mL. The within‐ and between‐batch precisions at three concentrations were 4.33–16.47 and 7.24–17.24% with accuracies of ?2.47–10.91 and 1.86–10.19%, respectively. This validated method was successfully used for a bioequivalence study of two clonidine transdermal patches on healthy volunteers. The results suggested that the test formulation of clonidine patch met the regulatory criterion for bioequivalence to the reference formulation, but a larger sample size should be needed for the estimation of bioequivalence. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Cabozantinib (CBZ) is used for the treatment of progressive, metastatic medullary thyroid cancer. Its major oxidative metabolite is cabozantinib N‐oxide (CBN), which contains a structural alert associated with mutagenicity, yet the pharmacokinetics studies lack the simultaneous investigation of CBN and dose proportionality. In the current study a simple LC–MS/MS method was developed and validated for the simultaneous estimation and pharmacokinetic investigation of CBZ and CBN in rat plasma. The analytes were separated on a Waters Atlantics C18 column (2.1 × 150 mm, 3 μm). The mass spectrometry analysis was conducted in positive ionization mode with multiple reaction monitoring. Good linearity was observed over the concentration ranges of 0.500–5000 ng/mL for CBZ and 0.525–2100 ng/mL for CBN. The extraction recoveries were constant and the intra‐ and inter‐batch precision and accuracy were acceptable for the analysis of biological samples. The method was successfully applied for the simultaneous estimation of CBZ and CBN in a pharmacokinetic study in Sprague–Dawley rats. After oral administration of CBZ (1, 5 and 12.6 mg/kg), although CBZ showed dose proportionality, the metabolite CBN showed obvious nonlinear elimination pharmacokinetics with greater than dose‐proportional increases in exposure.  相似文献   

8.
A robust, rapid and sensitive UPLC–MS/MS method has been developed, optimized and validated for the determination of amlodipine (AML) and atorvastatin (ATO) in human plasma using eplerenone as an internal standard (IS). Multiple‐reaction monitoring in positive electrospray ionization mode was utilized in Xevo TQD LC–MS/MS. Double extraction was used in sample preparation using diethyl ether and ethyl acetate. The prepared samples were analyzed using an Acquity UPLC BEH C18 (50 × 2.1 mm, 1.7 μm) column. Ammonium formate and acetonitrile, pumped isocraticaly at a flow rate of 0.25 mL/min, were used as a mobile phase. Method validation was done as per the US Food and Drug Administration guidelines. Linearity was achieved in the range of 0.1–10 ng/mL for AML and 0.05–50 ng/mL for ATO. Intra‐day and inter‐day accuracy and precision were calculated and found to be within the acceptable range. A short run time, of <1.5 min, permits analysis of a large number of plasma samples per batch. The developed and validated method was applied to estimate AML and ATO in a bioequivalence study in healthy human volunteers.  相似文献   

9.
A simple, sensitive and specific UHPLC–MS/MS method for quantification of plantagoguanidinic acid (PGA) in rat plasma was applied to investigate the pharmacokinetic behavior in vivo , using protopine as internal standard. The chromatography was separated on a Phenomenex® Luna‐C18 column (2.1 × 150 mm, 3.0 μm) within 7.0 min using a mobile phase consisting of acetonitrile–0.1% formic acid solution under gradient elution at a flow rate of 0.4 mL/min. Prepared samples were monitored by multiple reaction monitoring mode, with the target fragmentions m/z 226.2 → 84.2 for PGA and m/z 354.2 → 188.9 for IS in positive electrospray ionization. The calibration curve of PGA was linear throughout the range 1–1000 ng/mL (r = 0.9962). The lower limit of quantitation in plasma for PGA was 0.1 ng/mL, and the recovery was >88.6%. Intra‐ and interday accuracy ranged from −8.6 to 4.9%. Furthermore, this validated method was successfully used for a pre‐clinical pharmacokinetic study of PGA at a single dose of 20 and 5 mg/kg in rats via oral and intravenous administration. The study showed that PGA was absorpted rapidly and eliminated gradually with a greater absolute oral bioavailability of 70.1% in rats.  相似文献   

10.
A high‐throughput and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method has been developed for the determination of terbinafine in human plasma. The method employed liquid–liquid extraction of terbinafine and terbinafine‐d7 (used as internal standard) from 100 μL human plasma with ethyl acetate–n‐hexane (80:20, v/v) solvent mixture. Chromatography was performed on a BEH C18 (50 × 2.1 mm, 1.7 μm) column using acetonitrile–8.0 mm ammonium formate, pH 3.5 (85:15, v/v) under isocratic elution. For quantitative analysis, MS/MS ion transitions were monitored at m/z 292.2/141.1 and m/z 299.1/148.2 for terbinafine and terbinafine‐d7, respectively, using electrospray ionization in the positive mode. The method was validated according to regulatory guidance for selectivity, sensitivity, linearity, recovery, matrix effect, stability, dilution reliability and ruggedness with acceptable accuracy and precision. The method shows good linearity over the tested concentration range from 1.00 to 2000 ng/mL (r2 ≥ 0.9984). The intra‐batch and inter‐batch precision (CV) was 1.8–3.2 and 2.1–4.5%, respectively. The method was successfully applied to a bioequivalence study with 250 mg terbinafine in 32 healthy subjects. The major advantage of this method includes higher sensitivity, small plasma volume for processing and a short analysis time.  相似文献   

11.
Afatinib (AFT) is a new tyrosine kinase inhibitor approved for the treatment of nonsmall cell lung cancer. In the present study, a simple, specific, rapid and sensitive liquid chromatography tandem mass‐spectrometric method for the quantification of AFT in human plasma, was developed and validated. Chromatographic separation of the analytes was accomplished on a reversed‐phase Luna®‐PFP 100 Å column (50 × 2.0 mm; 3.0 μm) maintained at ambient temperature. Isocratic elution was carried out using acetonitrile–water (40:60, v/v) containing 10 mm ammonium formate buffer (pH 4.5) adjusted with formic acid at a flow rate of 0.4 mL min?1. The analytes were monitored by electrospray ionization in positive ion multiple reaction monitoring mode. The method yields a linear calibration plot (r2 = 0.9997) from a quantification range of 0.5–500 ng mL?1 with the lower limit of quantification and lower limit of detection of 1.29 and 0.42 ng mL?1, respectively. The intra‐ and inter‐day precision and accuracy were estimated and found to be in the ranges of 1.53–4.11% for precision and ?2.80–0.38% for accuracy. Finally, quantification of afatinib in a metabolic stability study in rat liver microsomes was achieved through the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A sensitive, rapid assay method for estimating ivabradine in human plasma has been developed and validated using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The procedure involved extraction of ivabradine and the internal standard (IS) from human plasma by solid‐phase extraction. Chromatographic separation was achieved using an isocratic mobile phase (0.1% formic acid–methanol, 60:40, v/v) at a flow rate of 1.0 mL/min on an Aglient Eclipse XDB C8 column (150 × 4.6 mm, 5 µm; maintained at 35°C) with a total run time of 4.5 min. Detection was achieved using an Applied Biosystems MDS Sciex (Concord, Ontario, Canada) API 3200 triple‐quadrupole mass spectrometer. The MS/MS ion transitions monitored were 469–177 for ivabradine and 453–177 for IS. Method validation was performed according to Food and Drug Administration guidelines, and the results met the acceptance criteria. The calibration curve was linear over a concentration range of 0.1–200 ng/mL. The lower limit of quantitation achieved was 0.1 ng/mL. Intra‐ and inter‐day precisions were in the range of 1.23–14.17% and 5.26‐8.96%, respectively. Finally, the method was successfully used in a pharmacokinetic study that measured ivabradine levels in healthy volunteers after a single 5 mg oral dose of ivabradine. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A sensitive and rapid ultra performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method was developed to determine voriconazole in human plasma. Sample preparation was accomplished through a simple one‐step protein precipitation with methanol. Chromatographic separation was carried out on an Acquity UPLC BEH C18 column using an isocratic mobile phase system composed of acetonitrile and water containing 1% formic acid (45:55, v/v) at a flow rate of 0.50 mL/min. Mass spectrometric analysis was performed using a QTrap5500 mass spectrometer coupled with an electrospray ionization source in the positive ion mode. The multiple reaction monitoring transitions of m/z 351.0 → 281.5 and m/z 237.1 → 194.2 were used to quantify voriconazole and carbamazepine (internal standard), respectively. The linearity of this method was found to be within the concentration range of 2.0–1000 ng/mL with a lower limit of quantification of 2.0 ng/mL. Only 1.0 min was needed for an analytical run. This fully validated method was successfully applied to the pharmacokinetic study after oral administration of 200 mg voriconazole to 20 Chinese healthy male volunteers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A rapid, simple, sensitive and selective LC‐MS/MS method was developed and validated for simultaneous quantification of montelukast (MT) and fexofenadine (FF) in human plasma (200 μL) using montelukast‐d6 (MT‐d6) and fexofenadine‐d10 (FF‐d10), respectively as an internal standard (IS) as per the US Food and Drug Administration guidelines. The chromatographic resolution was achieved on a Chromolith RP18e column using an isocratic mobile phase consisting of 20 mm ammonium formate–acetonitrile (20:80, v/v) at flow rate of 1.2 mL/min. The LC‐MS/MS was operated under the multiple‐reaction monitoring mode using electrospray ionization. The total run time of analysis was 4 min and elution of MT, FF, MT‐d6 and FF‐d10 occurred at 2.5, 1.2, 2.4 and 1.2 min, respectively. The standard curve found to be linear in the range 2.00–1000 ng/mL with a coefficient of correlation of ≥0.99 for both the drugs. The intra‐ and inter‐day accuracy and precision values for MT and FF met the acceptance as per FDA guidelines. MT and FF were found to be stable in a battery of stability studies viz., bench‐top, auto‐sampler and repeated freeze‐thaw cycles. The validated assay was applied to an oral bioequivalence study in humans. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A sensitive and selective liquid chromatography–tandem mass spectrometry (LC–MS/MS) method is described for the simultaneous determination of silodosin (SLD) and its active metabolite silodosin β‐d ‐glucuronide (KMD‐3213G) in human plasma. Liquid–liquid extraction of plasma samples was carried out with ethyl acetate and methyl tert‐butyl ether solvent mixture using deuterated analogs as internal standards. The extraction recoveries of SLD and KMD‐3213G were in the ranges 90.8–93.4 and 87.6–89.9%, respectively. The extracts were analyzed on a Symmetry C18 (50 × 4.6 mm, 5 μm) column under gradient conditions using 10 mm ammonium formate in water and methanol–acetonitrile (40:60, v/v), within 6.0 min. For MS/MS measurements, ionization of the analytes was carried out in the positive ionization mode and the transitions monitored were m/z 496.1 → 261.2 for SLD and m/z 670.2 → 494.1 for KMD‐3213G. The method showed good linearity, accuracy, precision and stability in the range 0.10–80.0 ng/mL for SLD and KMD‐3213G. The IS‐normalized matrix factors obtained were highly consistent, ranging from 0.962 to 1.023 for both analytes. The method was used to support a bioequivalence study of SLD and its metabolite in healthy volunteers after oral administration of 8 mg silodosin capsules.  相似文献   

16.
A facile, fast and specific method based on liquid chromatography–tandem mass spectrometry (LC–MS/MS) for the simultaneous quantitation of paracetamol, chlorzoxazone and aceclofenac in human plasma was developed and validated. Sample preparation was achieved by liquid–liquid extraction. The analysis was performed on a reversed‐phase C18 HPLC column (5 μm, 4.6 × 50 mm) using acetonitrile–10 mM ammonium formate pH 3.0 (65:35, v/v) as the mobile phase where atrovastatin was used as an internal standard. A very small injection volume (3 μL) was applied and the run time was 2.0 min. The detection was carried out by electrospray positive and negative ionization mass spectrometry in the multiple‐reaction monitoring mode. The developed method was capable of determining the analytes over the concentration ranges of 0.03–30.0, 0.015–15.00 and 0.15–15.00 μg/mL for paracetamol, chlorzoxazone and aceclofenac, respectively. Intraday and interday precisions (as coefficient of variation) were found to be ≤12.3% with an accuracy (as relative error) of ±5.0%. The method was successfully applied to a pharmacokinetic study of the three analytes after being orally administered to six healthy volunteers.  相似文献   

17.
Farrerol is a 2,3‐dihydro‐flavonoid isolated from rhododendron. In this study, a sensitive and selective ultra‐high performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method was developed for the determination of farrerol in rat plasma. Liquid–liquid extraction by ethyl ether was used for sample preparation. Chromatographic separation was achieved on an Agilent UHPLC XDB‐C18 column (2.1 × 100 mm, 1.8 μm) with water and methanol (30:70, v /v) as the mobile phase. An electrospray source was applied and operated in negative ion mode; selection reaction monitoring was used for quantification using target fragment ions m/z 299 → 179 for farrerol and m/z 267 → 252 for internal standard. Calibration plots were linear in the range of 2.88–1440 ng/mL for farrerol in rat plasma. Intra‐ and inter‐day precisions were <11.6%, and the accuracy ranged from −13.9 to 11.9%. The UHPLC–MS/MS method was successfully applied in pharmacokinetics and bioavailability studies of farrerol in rats.  相似文献   

18.
A highly sensitive, selective and rapid ultra‐performance liquid chromatography–tandem mass spectrometry method has been developed for the quantification of a Janus kinase (JAK) inhibitor, tofacitinib (TOF). The assay employed liquid–liquid extraction with methyl‐tert butyl ether to extract tofacitinib and tofacitinib‐13C3 15 N (as internal standard) from human plasma. The samples were analyzed on a UPLC BEH C18 (50 × 2.1 mm, 1.7 μm) column using acetonitrile and 10.0 mm ammonium acetate, pH 4.5 (75:25, v/v) as the mobile phase within 1.4 min. The precursor/product ion transitions were monitored at m/z 313.3/149.2 and 317.4/149.2 for tofacitinib and tofacitinib‐13C3 15 N, respectively, in the positive electrospray ionization mode. The calibration curves were linear (r2 ≥ 0.9978) across the concentration range of 0.05–100 ng/mL. The mean extraction recovery of tofacitinib across quality controls was 98.6%. The intra‐ and inter‐batch precision (CV) and accuracy ranged from 2.1–5.1 and 96.2–103.1%, respectively. All validation results complied well with the current guidelines. The method is amenable to high sample throughput and was applied to determine TOF plasma concentration in a pharmacokinetic study with 12 healthy Indian subjects after oral administration of 5 mg tablets.  相似文献   

19.
A simple, specific, and sensitive liquid chromatography–mass spectrometry (LC‐MS) method for determination of cyasterone in rat plasma was developed in our laboratory. Cucurbitacin B was used as an internal standard (IS). After protein precipitation with twofold volume of acetonitrile, the analyte and IS were separated on a Luna C18 column (100 × 4.6 mm, i.d., 3.0 µm; Phenomenex) by isocratic elution with acetonitrile–water (80:20, v/v) as the mobile phase at a flow rate of 0.4 mL/min. An electrospray ionization source was applied and operated in the positive ion mode; selected ion monitoring scan mode was used for quantification, and the target ions m/z 543.3 for cyasterone and m/z 581.3 for IS were chosen. Good linearity was observed in the concentration range of 0.40–400 ng/mL for cyasterone in rat plasma. Intra‐day and inter‐day precision were both <7.4%. This method was proved to be suitable for pharmacokinetic studies after oral (5.0 mg/kg) or intravenous (0.5 mg/kg) administration of cyasterone in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A rapid, simple, selective and sensitive LC‐MS/MS method was developed for the determination of curculigoside in rat plasma. The analytical procedure involves extraction of curculigoside and syringin (internal standard, IS) from rat plasma with a one‐step extraction method by protein precipitation. The chromatographic resolution was performed on an Agilent XDB‐C18 column (4.6 × 50 mm, 5 µm) using an isocratic mobile phase of methanol with 0.1% formic acid and H2O with 0.1% formic acid (45:55, v/v) at a flow rate of 0.35 mL/min with a total run time of 2.0 min. The assay was achieved under the multiple‐reaction monitoring mode using positive electrospray ionization. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over 4.00–4000 ng/mL (R = 0.9984) for curculigoside with a lower limit of quantification of 4.00 ng/mL in rat plasma. The intra‐ and inter‐day precisions and accuracies were 3.5–4.6 and 0.7–9.1%, in rat plasma, respectively. The validated LC‐MS/MS method was successfully applied to a pharmacokinetic study of curculigoside in rats after a single intravenous and oral administration of 3.2 and 32 mg/kg. The absolute bioavailability of curculigoside after oral administration was 1.27%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号