首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conductive hydrogels are a class of stretchable conductive materials that are important for various applications. However, water‐based conductive hydrogels inevitably lose elasticity and conductivity at subzero temperatures, which severely limits their applications at low temperatures. Herein we report anti‐freezing conductive organohydrogels by using an H2O/ethylene glycol binary solvent as dispersion medium. Owing to the freezing tolerance of the binary solvent, our organohydrogels exhibit stable flexibility and strain‐sensitivity in the temperature range from −55.0 to 44.6 °C. Meanwhile, the solvent molecules could form hydrogen bonds with polyvinyl alcohol (PVA) chains and induce the crystallization of PVA, greatly improving the mechanical strength of the organohydrogels. Furthermore, the non‐covalent crosslinks endow the conductive organohydrogels with intriguing remoldability and self‐healing capability, which are important for practical applications.  相似文献   

2.
Tough hydrogels, polymeric network structures with excellent mechanical properties (such as high stretchability and toughness), are emerging soft materials. Despite their remarkably mechanical features, tough hydrogels exhibit two flaws (freezing around the icing temperatures of water and drying under arid conditions). Inspired by cryoprotectants (CPAs) used in the inhibition of the icing of water in biological samples, a versatile and straightforward method is reported to fabricate extreme anti‐freezing, non‐drying CPA‐based organohydrogels with long‐term stability by partially displacing water molecules within the pre‐fabricated hydrogels. CPA‐based Ca‐alginate/polyacrylamide (PAAm) tough hydrogels were successfully fabricated with glycerol, glycol, and sorbitol. The CPA‐based organohydrogels remain unfrozen and mechanically flexible even up to −70 °C and are stable under ambient conditions or even vacuum.  相似文献   

3.
Tough hydrogels, polymeric network structures with excellent mechanical properties (such as high stretchability and toughness), are emerging soft materials. Despite their remarkably mechanical features, tough hydrogels exhibit two flaws (freezing around the icing temperatures of water and drying under arid conditions). Inspired by cryoprotectants (CPAs) used in the inhibition of the icing of water in biological samples, a versatile and straightforward method is reported to fabricate extreme anti‐freezing, non‐drying CPA‐based organohydrogels with long‐term stability by partially displacing water molecules within the pre‐fabricated hydrogels. CPA‐based Ca‐alginate/polyacrylamide (PAAm) tough hydrogels were successfully fabricated with glycerol, glycol, and sorbitol. The CPA‐based organohydrogels remain unfrozen and mechanically flexible even up to ?70 °C and are stable under ambient conditions or even vacuum.  相似文献   

4.
Poly(vinyl alcohol) (PVA) was blended with sodium alginate (Alg) in various ratios and crosslinked with calcium chloride and made into hydrogel membranes. The dependence of the swelling behavior of these Alg‐Ca/PVA hydrogels on pH was investigated. The temperature‐dependent swelling behavior of the semi‐interpenetrating network (semi‐IPN) hydrogels was examined at temperatures from 2 to 45°C and the enthalpy of mixing (ΔHmix) was determined at various temperatures. The molecular structure of the hydrogels was studied by infrared spectroscopy and their water structure in the semi‐IPN hydrogels was measured by differential scanning calorimetry (DSC). The influence of Ca2+ content on the network structure of Alg‐Ca/PVA hydrogels was investigated in terms of the compressive elastic modulus, effective crosslinking density, and the polymer–solvent interaction parameter based on the Flory theory. The loading of alizarin red S (ARS) followed the Langmuir isotherm mechanism and the release kinetics of ARS from the Alg‐Ca/PVA hydrogels followed the Fickian diffusion mechanism. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Conductive hydrogels have attracted considerable attention owing to their potential for use as electronic skin and sensors.However,the loss of the inherent elasticity or conductivity in cold environments severely limits their working conditions.Generally,organic solvents or inorganic salts can be incorporated into hydrogels as cryoprotectants.However,their toxicity and/or corrosive nature as well as the significant water loss during the solvent exchange present serious difficulties.Herein,a liqu...  相似文献   

6.
The properties of polyvinyl alcohol (PVA) nanocomposite hydrogels influenced by nanoparticles are reviewed. Various kinds of nanoparticles with excellent mechanical and electrical properties have been introduced into PVA hydrogel to produce stretchable and conductive PVA nanocomposite hydrogel. Understanding the mechanism between the matrix of PVA hydrogel and nanoparticles is therefore critical for the development of PVA nanocomposite hydrogels. This review focuses on the nanoparticles include carbon nanotubes, graphene oxide and metal nanoparticles, and describes the effects of nanoparticles on the mechanical and conductive properties of PVA nanocomposite hydrogels. A new promising area of soft stretchable PVA nanocomposite hydrogel is highlighted for possible applications. Finally, a brief outlook for future research is presented.  相似文献   

7.
Theophylline hydrogels of atactic‐poly(vinyl alcohol) (a‐PVA)/H2O and a‐PVA/NaCl/H2O systems were prepared followed by cyclic freezing (?30°C for 16 hr)–thawing (at room temperature for 8 hr) and one cycle gelation (at ?20°C for 24 hr) processes, respectively. In order to prepare xerogels (dried hydrogels) of these hydogel systems, an apparently first‐order mass transfer phenomenon of water as evaporation was observed for a‐PVA/H2O hydrogel system, while heating at 60°C. The rate of evaporation decreased with increasing time in hyperbolic fashion. The total surface area (both lateral and two end surfaces of hydrogel matrix disc) decreased linearly for the first 90 min and thereafter had a tendency towards the steady‐state. The total mass flux showed time dependent linear reduction phenomenon, which is a characteristic physical behavior for these hydrogel systems on heat treatment. When NaCl was included in a‐PVA/H2O system mass transfer of water followed fourth‐order polynomial. But in consideration of a comparative study, sustained mass transfer was found from the hydrogel matrices of a‐PVA/H2O/NaCl system (gelation at ?20°C). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Wound dressings are vital for cutaneous wound healing. In this study, a bi‐layer dressing composed of polyvinyl alcohol/carboxymethyl cellulose/polyethylene glycol (PVA/CMC/PEG) hydrogels is produced through a thawing–freezing method based on the study of the pore size of single‐layer hydrogels. Then the physical properties and healing of full‐thickness skin defects treated with hydrogels are inspected. The results show that the pore size of the single‐layer PVA/CMC/PEG hyrogel can be controlled. The obtained non‐adhesive bi‐layer hydrogels show gradually increasing pore sizes from the upper to the lower layer and two layers are well bonded. In addition, bi‐layer dressings with good mechanical properties can effectively prevent bacterial penetration and control the moisture loss of wounds to maintain a humid environment for wounds. A full‐thickness skin defect test shows that bi‐layer hydrogels can significantly accelerate wound closure. The experiment indicates that the bi‐layer PVA/CMC/PEG hydrogels can be used as potential wound dressings.  相似文献   

9.
The relationships between the structure and the viscoelastic properties of freeze/thaw PVA hydrogels obtained by repeatedly freezing and thawing dilute solutions of PVA in D2O(11% w/w PVA) in as-prepared and rehydrated states are investigated. Our results indicate that the PVA chains and solvent molecules are organized at different hierarchical length scales, which include the presence of micro- and macro-pores, into a network scaffolding. The porous network is ensured by the presence of crystallites, which act as knots interconnected by portions of PVA chains swollen by the solvent. X-ray diffraction and SANS techniques are used to obtain structural information at short (angstroms) and medium (nanometers) ranges of length scales, concerning the crystallinity, the size of small crystalline aggregates and the average distance between crystallites in PVA hydrogels. Indirect information concerning the structural organization on the large length scales (microns) are provided by viscoelastic measurements. The dynamic shear elastic moduli at low frequency and low strain amplitude, G′, are determined and related to the degree of crystallinity. These data indicate that a minimum crystallinity of 1% is required for these PVA samples to exhibit gel behaviour and have allowed obtaining the order of magnitude of the average mesh size in these gels. Finally, it is shown that the negative effect of aging, inducing worse physical and mechanical properties in these systems, may be prevented using a drying/re-hydration protocol able to keep the physical properties of the as-prepared PVA hydrogels.  相似文献   

10.
A series of magnetic semi‐interpenetrating polymer network (semi‐IPN) hydrogels was prepared in one‐stage strategy composed of linear poly(vinyl alcohol) (PVA) chains and magnetic γ‐Fe2O3 nanoparticles entrapped within the cross‐linked poly(acrylamide‐co‐vinylimidazole) (poly(AAm‐co‐VI)) network. The influence of PVA, weight ratio of AAm:VI, γ‐Fe2O3, and MBA on the swelling properties of the obtained nanocomposite hydrogels was evaluated. The prepared magnetic semi‐IPN hydrogels were fully characterized and used as absorbent for removal of Pb(II) and Cd(II) from water. Factors that influence the metal ion adsorption such as solution pH, contact time, initial metal ion concentration, and temperature were studied in details. The experimental results were reliably described by Langmuir adsorption isotherms. The adsorption capacity of semi‐IPN nanocomposite for Pb(II) and Cd(II) were175.80 and 149.76 mg g?1, respectively. The kinetic experimental data indicated that the chemical sorption is the rate‐determining step. According to thermodynamic studies, Pb(II) and Cd(II) adsorption on the hydrogels was endothermic and also chemical in nature. The prepared magnetic PVA/poly(AAm‐co‐VI) semi‐IPN hydrogels could be employed as efficient and low‐cost adsorbents of heavy metal ions from water. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
To prepare water‐soluble, syndiotacticity‐rich poly(vinyl alcohol) (PVA) microfibrils for various industrial applications, we synthesized syndiotacticity‐rich, low molecular weight PVA by the solution polymerization of vinyl pivalate (VPi) in tetrahydrofuran (THF) at low temperatures with 2,2′‐azobis(2,4‐dimethylvaleronitrile) (ADMVN) as an initiator and successive saponification of poly(vinyl pivalate) (PVPi). Effects of the initiator and monomer concentrations and the polymerization temperature were investigated in terms of the polymerization behaviors and molecular structures of PVPi and the corresponding syndiotacticity‐rich PVA. The polymerization rate of VPi in THF was proportional to the 0.91 power of the ADMVN concentration, indicating the heterogeneous nature of THF polymerization. The low‐temperature solution polymerization of VPi in THF with ADMVN proved to be successful in obtaining water‐soluble PVA with a number‐average degree of polymerization (Pn) of 300–900, a syndiotactic dyad content of 60–63%, and an ultimate conversion of VPi into PVPi of over 75%. Despite the low molecular weight of PVA with Pn = 800, water‐soluble PVA microfibrillar fibers were prepared because of the high level of syndiotacticity. In contrast, for PVA with Pn = 330, shapeless and globular morphologies were observed, indicating that molecular weight has an important role in the in situ fibrillation of syndiotacticity‐rich PVA. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1103–1111, 2002  相似文献   

12.
Thermosensitive Poly(N‐isopropylacrylamide) (PNIPA) hydrogels were synthesized by a free radical solution polymerization in three different ways. Normal hydrogels were prepared at room temperature and normal cryogels were prepared at subzero temperature. A cation surfactant dodecyl dimethyl benzyl ammonium bromide (DDBAB) was used during preparation of novel cryogels in freezing state. The response rates of normal hydrogels were very slow, whereas the rates of both normal and novel cryogels were very fast because of the macroporous structure of the cryogels. Mixed solvents which were composed of pure water and 1,4‐dioxane at various concentrations were used instead of pure water during the polymerization. The effects of the mixed solvent on morphology, swelling ratio, and deswelling/reswelling kinetics of the three kinds of hydrogels were investigated. For normal hydrogels and normal cryogels, there was no remarkable difference no matter the mixed solvent or pure water was used. However, the properties of the resulted novel cryogels were much different with the concentration of dioxane. Finally, the resulted hydrogels were used for concentrating emulsified paraffin. The different separation performance was attributed to the different structure of gel matrix. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6594–6603, 2008  相似文献   

13.
Semi‐interpenetrating polymeric networks of chitosan and poly(vinyl alcohol) [PVA] were prepared by varying the ratio of the constituents. The hydrogels were crosslinked using genipin, a naturally occurring nontoxic cross‐linking agent. The swelling behavior of these hydrogels was studied by immersing the films in deionized water at various temperatures and in buffer solutions of different pH. The states of water in the hydrogels, swollen at 25°C and pH 7, were determined using Differential Scanning Calorimetry (DSC). The swelling behavior of the gels was found to be dependent on temperature and pH of the medium. The amount of freezing water in the swollen hydrogels increased, whereas the amount of nonfreezing bound water remained more or less the same with increasing PVA concentration.  相似文献   

14.
An improved, simple, and efficient method for the synthesis of lactose‐containing monomer acrylamidolactamine (LAM) has been reported. Free radical copolymerization of this monomer with N‐isopropylacrylamide (NIPAM) in the presence of the crosslinking reagent N,N′‐methylenebisacrylamide (BisA) (1.2 mol %) proceeded smoothly in an aqueous solution using potassium persulfate (KPS) and N,N,N′,N′‐tetramethylethylenediamine (TMEDA) as the initiating system and gave transparent hydrogels. Reactivity ratios were estimated from copolymerization reactions carried out in solution without BisA crosslinker and at low conversion, by using both linearization and nonlinearization methods. They were found to be rLAM = 0.75 and rNIPAM = 1.22. The swelling behavior of the hydrogels was studied by immersion of the hydrogels in deionized water at different temperatures. Equilibrium water uptake was increased when the LAM content was higher than 47 mol %, and reached ≈ 44‐fold with 100 mol % LAM at room temperature. Depending on the composition, the gels showed sharp swelling transitions with small changes in temperature. Differential scanning calorimetry (DSC) was used to characterize the swelling transition and the organization of water in the copolymer hydrogels. The amounts of freezable water in these hydrogels ranged from 81 to 89%, and was not correlated to the content of the sugar monomer. These gels have potential applications as biocompatible materials. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1393–1402, 1999  相似文献   

15.
The self‐healing of zinc‐ion batteries (ZIBs) will not only significantly improve the durability and extend the lifetime of devices, but also decrease electronic waste and economic cost. A poly(vinyl alcohol)/zinc trifluoromethanesulfonate (PVA/Zn(CF3SO3)2) hydrogel electrolyte was fabricated by a facile freeze/thaw strategy. PVA/Zn(CF3SO3)2 hydrogels possess excellent ionic conductivity and stable electrochemical performance. Such hydrogel electrolytes can autonomously self‐heal by hydrogen bonding without any external stimulus. All‐in‐one integrated ZIBs can be assembled by incorporating the cathode, separator, and anode into hydrogel matrix since the fabrication of PVA/Zn(CF3SO3)2 hydrogel is a process of converting the liquid to quasi‐solid state. The ZIBs show an outstanding self‐healing and can recover electrochemical performance completely even after several cutting/healing cycles.  相似文献   

16.
Recently, applications of hyaluronic acid (HA) as a biomaterial were investigated. However, the weak structure of HA gel and the effects of using cross‐linker raised concerns during in vivo resolution. In this study, we investigated the method to solve these two problems using physical cross‐linking and compositing with poly(vinyl alcohol) (PVA). Various weight ratios of HA and PVA solutions were mixed, adjustment of pH to 1.8 using HCl then used to fabricate HA‐PVA cryo‐gel by freezing‐thawing. Young's modulus of the prepared gel rose with the increase of both HA and PVA concentrations or either one of them. We estimated that HA and PVA have exhibited these mechanical properties due to forming a double network. HA‐PVA gel showed kinetic friction force of approximately 10 times of PVA gel, while water contact angle and protein adsorption of HA‐PVA gels were remarkably decreased. The properties of the prepared gel suggest that it can be used for postoperative adhesion prevention applications.  相似文献   

17.
A 32‐membered library of poly(2‐oxazoline)‐based hydrogels of the composition p EtOx m‐p PhOx n‐p PBO q (m/n = 150/0, 100/50, 50/100, and 0/150; q = 1.5–30) was prepared from 2‐ethyl‐ ( EtOx ), 2‐phenyl‐2‐oxazoline ( PhOx ), and phenylene‐1,3‐bis‐(2‐oxazoline) ( PBO ). The polymerizations were performed from ground monomer mixtures at 140 °C in a single‐mode microwave reactor in reaction times as short as 1 h. Purified hydrogels, containing no residual monomers, were obtained in yields of 95% or higher. Acid‐mediated hydrolysis rates as well as swelling degrees of the hydrogels were adjustable over a broad range; swelling degrees in water/ethanol/dichloromethane ranged from 0 to 13.8/11.7/20.0. The hydrogels could incorporate organic molecules according to in situ or post‐synthetic routines. Post‐synthetic routines enabled for the preparation of hydrogels from which the incorporated compounds were only released through diffusion processes if the solvent was changed or through hydrogel degradation if the pH was lowered.  相似文献   

18.
Development of novel photoluminescent hydrogels with toughness, biocompatibility, and antibiosis is important for the applications in biomedical field. Herein, novel tough photoluminescent lanthanide (Ln)‐alginate/poly(vinyl alcohol) (PVA) hydrogels with the properties of biocompatibility and antibiosis have been facilely synthesized by introducing hydrogen bonds and coordination bonds into the interpenetrating networks of Na‐alginate and PVA, via approaches of frozen‐thawing and ion‐exchanging. The resultant hydrogels exhibit high mechanical strength (0.6 MPa tensile strength, 5.0 tensile strain, 6.0 MPa compressive strength, and 900 kJ m−3 energy dissipation under 400% stretch), good photoluminescence as well as biocompatibility and antibacterial activity. The design strategy provides a new avenue for the fabrication of multifunctional photoluminescent hydrogels based on biocompatible polymers.

  相似文献   


19.
Photocrosslinked hyaluronic acid/poly(vinyl alcohol)‐styrylpyridinium (HA/PVA‐SbQ) hydrogels were synthesized for controlled antitumor drug delivery. The photocrosslinking reaction was rapid, and the time required for completely converting into the insoluble hydrogels was less than 500 s on exposure to 5 mW/cm2 UV light irradiation. The resulting hydrogels exhibited sensitivity to the pH value of the surrounding environment. Scanning electron microscopic analysis revealed that the morphology and the pore size of the hydrogels could be controlled by changing the ratio of HA and PVA‐SbQ in the formulations. Paclitaxel (PTX)‐loaded hydrogel could also be formed rapidly by UV irradiation of a mixed solution of HA/PVA‐SbQ and PTX. Release profiles of PTX from the hydrogels showed pH‐dependent and sustained manner. Moreover, our data revealed that PTX released from the HA hydrogels remained biologically active and had the capability to kill cancer cells. In contrast, control groups of HA hydrogels without PTX did not exhibit any cytotoxicity. This study demonstrates the feasibility of using HA‐based hydrogels as a potential carrier for chemotherapeutic drugs for cancer treatments. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
The aqueous solution behavior and thermoreversible gelation properties of pyridine‐end‐functionalized poly(ethylene glycol)–poly(L ‐lactide) (PEG–(PLLA)8–py) star block copolymers in the presence of coordinating transition metal ions were studied. In aqueous solutions, the macromonomers self‐assembled into micelles and micellar aggregates at low concentrations and formed physically crosslinked, thermoreversible hydrogels above a critical gel concentration (CGC) of 8% w/v. In the presence of transition metal ions like Cu(II), Co(II), or Mn(II), the aggregate dimensions increased. Above the CGC, the gel–sol transition shifted to higher temperatures due to the formation of additional crosslinks from intermolecular coordination complexes between metal ions and pyridine ligands. Furthermore, as an example, PEG–(PLLA)8–py hydrogels stabilized by Mn(II)–pyridine coordination complexes were more resistant against degradation/dissolution when placed in phosphate buffered saline at 37 °C when compared with hydrogels prepared in water. Importantly, the stabilizing effect of metal–ligand coordination was noticeable at very low Cu(II) concentrations, which have been reported to be noncytotoxic for fibroblasts in vitro. These novel PEG–(PLLA)8–py metallo‐hydrogels, which are the first systems to combine metal–ligand coordination with the advantageous properties of PEG–PLLA copolymer hydrogels, are appealing materials that may find use in biomedical as well as environmental applications like the removal of heavy metal ions from waste streams. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号