首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adulterated products are continuously detected in society and cause problems. In this study, we developed and validated a method for determining synthetic sedative‐hypnotics and sleep inducers, including barbital, benzodiazepam, zolpidem, and first‐generation antihistamines, in adulterated products using Quadrupole‐Orbitrap mass spectrometry and ultrahigh performance liquid chromatography with tandem mass spectrometry. In Quadrupole‐Orbitrap mass spectrometry analysis, target compounds were confirmed using a combination of retention time, mass tolerance, mass accuracy, and fragment ions. For quantification, several validation parameters were employed using ultrahigh performance liquid chromatography with tandem mass spectrometry. The limit of detection and limit of quantitation was 0.05–53 and 0.17–177 ng/mL, respectively. The correlation coefficient for linearity was more than 0.995. The intra‐ and interassay accuracies were 86–110 and 84–111%, respectively. Their precision values were evaluated as within 4.0 (intraday) and 10.7% (interday). Mean recoveries of target compounds in adulterated products ranged from 85 to 116%. The relative standard deviation of stability was less than 10.7% at 4°C for 48 h. The 144 adulterated products obtained over 3 years (2014–2016) from online and in‐person vendors were tested using established methods. After rapidly screening with Quadrupole‐Orbitrap mass spectrometry, the detected samples were quantified using ultrahigh performance liquid chromatography with tandem mass spectrometry. Two of them were adulterated with phenobarbital.  相似文献   

2.
To support the evaluation of the pharmacokinetic parameters of asenapine (ASE) in urine, we developed and validated online solid‐phase extraction high‐performance liquid chromatography methods with tandem mass spectrometry detection (SPE‐LC‐MS/MS) for the quantification of ASE and two of its major metabolites, N‐desmethylasenapine (DMA) and asenapine‐N+‐glucuronide (ASG). The linearity in human urine was found acceptable for quantification in a concentration range of 0.500–100 ng/mL for ASE and DMA and 10.0–3000 ng/mL for ASG, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Astilbin, mainly isolated from a commonly used herbal medicine, Smilax glabra Roxb (SGR), exhibits a variety of pharmacological activities and biological effects. It is metabolized by intestinal bacteria after oral administration which leads to the variation of ethnopharmacological profile of this traditional medicine. However, little is known on the interactions of this active compound with intestinal bacteria, which would be very helpful in unravelling how SGR works. In this study, different pure bacteria from human feces were isolated and were used to investigate their conversion capability of astilbin. Ultra‐performance liquid chromatography/quadrupole‐time‐of‐flight mass spectrometry (UPLC‐Q‐TOF/MS) technique combined with MetabolynxTM software was used to analyze astilbin and its metabolites. The parent compound and two metabolites (quercetin and eriodictyol) were detected in the isolated bacterial samples compared with blank samples. Quercetin was present in Enterococcus sp. 8B, 8–2 and 9–2 samples. Eriodictyol was only identified in Enterococcus sp. 8B sample. The metabolic routes and metabolites of astilbin produced by the different intestinal bacteria are reported for the first time. This will be useful for the investigation of the pharmacokinetic study of astilbin in vivo and the role of different intestinal bacteria in the metabolism of natural compounds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The antipsychotics risperidone, aripiprazole and pipamperone are frequently prescribed for the treatment in children with autism. The aim of this study was to validate an ultra‐high performance liquid chromatography–mass spectrometry method for the quantification of these antipsychotics in plasma. An ultra‐high performance liquid chromatography–mass spectrometry assay was developed for the determination of the drugs and metabolites. Gradient elution was performed on a reversed‐phase column with a mobile phase consisting of ammonium acetate, formic acid in methanol or in Milli‐Q ultrapure water at a flow rate of 0.5 mL/min. The method was validated according to the US Food and Drug Administration guidelines. The analytes were found to be stable enough after reconstitution and injection of only 5 μL improved the accuracy and precision in combination with the internal standard. Calibration curves of all five analytes were linear. All analytes were stable for at least 72 h in the autosampler and the high quality control of 9‐OH‐risperidone was stable for 48 h. The method allows quantification of all analytes. The advantage of this method is the combination of a minimal injection volume, a short run‐time, an easy sample preparation method and the ability to quantify all analytes in one run. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
An analytical method based on liquid chromatography with quadrupole time‐of‐flight mass spectrometry has been developed for the simultaneous determination of six aminoglycoside antibiotics in honey. The sample pretreatment included extraction with aqueous trichloroacetic acid followed by solid‐phase extraction on Strata‐X polymeric reversed phase cartridges. Liquid chromatography separation was performed on an Obelisc R zwitterionic type mixed‐mode column. An ionBooster™ heated electrospray source was used and showed enhanced ionization efficiency in comparison to a conventional electrospray source. The observed signal enhancement ranged from 3‐ (neomycin) to 16‐fold (gentamicin C1). A data‐dependent mass spectrometry acquisition approach was employed, in which the full mass spectrometry dataset provided quantification and a scheduled precursor list was used to trigger an alternating data‐dependent acquisition of MS2 spectra for confirmation purposes. The described method was validated in accordance to CD 2002/657/EC. Decision limit values were in the range 11.2–33.6 ng/g, and satisfactory performance characteristics were obtained for recovery (65–76%), repeatability (3.8–7.3%), and linearity (≥0.995). The method was applied to the analysis of 49 real honey samples from the country of Georgia. Streptomycin was detected in two samples at 117 and 35 ng/g, and gentamicin C1 was detected in one sample at 32 ng/g.  相似文献   

6.
A simple and rapid method was developed for the determination of three free cytokinins, namely, N6‐(Δ2‐isopentenyl)adenine, zeatin, and dihydrozeatin, in plants using TurboFlow on‐line cleanup liquid chromatography combined with hybrid quadrupole‐Orbitrap high‐resolution mass spectrometry. The samples were extracted using acetonitrile, and then the extract was purified on a C18‐p column, in which the sample matrix was removed and the analytes were retained. Subsequently, the analytes were eluted from the extraction column onto the analytical column (Hypersil Gold C18 column) prior to chromatographic separation and hybrid Q‐Orbitrap detection using the targeted‐MS2 scan mode. The linearity was satisfactory with a correlation coefficient of >0.999 at concentrations ranging from 5–5000 pg/mL. The limits of quantification for the analytes ranged from 4.2–5.2 pg/mL. The intra‐ and inter‐day average recoveries of analytes fortified at three levels ranged from 85.4–108.2%, and the intra‐ and inter‐day relative standard deviations ranged from 4.04–8.57%. The method was successfully applied for the determination of free cytokinins in different tissue samples of Oryza sativa and Arabidopsis thaliana.  相似文献   

7.
In our previous studies, caudatin‐2,6‐dideoxy‐3‐O‐methy‐β‐d‐ cymaropyranoside (CDMC) was for the first time isolated from Cynanchum auriculatum Royle ex Wightand and was reported to possess a wide range of biological activities. However, the routes and metabolites of CDMC produced by intestinal bacteria are not well understood. In this study, ultra‐performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF‐MS) technique combined with MetabolynxTMsoftware was applied to analyze metabolites of CDMC by human intestinal bacteria. The incubated samples collected for 48 h in an anaerobic incubator and extracted with ethyl acetate were analyzed by UPLC‐Q‐TOF‐MS within 12 min. Eight metabolites were identified based on MS and MS/MS data. The results indicated that hydrolysis, hydrogenation, demethylation and hydroxylation were the major metabolic pathways of CDMC in vitro. Seven strains of bacteria including Bacillus sp. 46, Enterococcus sp. 30 and sp. 45, Escherichia sp. 49A, sp. 64, sp. 68 and sp. 75 were further identified using 16S rRNA gene sequencing owing to their relatively strong metabolic capacity toward CDMC. The present study provides important information about metabolic routes of CDMC and the roles of different intestinal bacteria in the metabolism of CDMC. Moreover, those metabolites might influence the biological effect of CDMC in vivo, which affects the clinical effects of this medicinal plant. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, a sensitive, selective and reproducible liquid chromatography–tandem mass spectrometry method for the simultaneous determination of 1,5‐dicaffeoylquinic acid (1,5‐DCQA) and its active metabolites, 1‐caffeoyl‐5‐feruoylquinic acid and 1,5‐O‐diferuoylquinic acid, in human plasma, using puerarin as internal standard, was developed and validated. Analytes were extracted from plasma samples by liquid–liquid extraction with ethyl acetate, separated on a C18 reversed‐phase column with water containing 5 mM ammonium acetate and acetonitrile as the mobile phase and detected by electrospray ionization mass spectrometry in negative selected reaction monitoring mode. The accuracy and precision of the method were acceptable and linearity was good over the range 1–200 ng/mL for each analyte. In addition, the selectivity, extraction recovery and matrix effect were satisfactory too. The validated LC‐MS/MS method was successfully applied to phase II clinical pharmacokinetic study of 1,5‐DCQA in patients. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
To date, several methods for the quantification of tamoxifen and its metabolites have been developed, most of which employ liquid chromatography tandem–mass spectrometry (LC–MS/MS). These methods are highly sensitive and reproducible, but are also time‐consuming and require expensive equipment; one of their main disadvantages is matrix ionization effects. A more viable option, particularly in developing countries, is high‐performance liquid chromatography coupled with UV or fluorescence detection. We developed and validated a method for simultaneous quantification of tamoxifen, endoxifen and 4‐hydroxytamoxifen based on high‐performance liquid chromatography with fluorescence detection in a reverse‐phase column. The method is rapid (16 min plus 5 min of column re‐equilibrium), accurate (80–100%) and precise (0.23–6.00%), and does not require any additional irradiation process. Sample pretreatment consists of protein precipitation with acetonitrile under alkaline conditions, employing only 200 μL plasma. The validated method's wide range allowed quantification of steady‐state levels in patients under standard tamoxifen treatment (20 mg/day). This assay is ready for application in clinical studies and routine quantification of tamoxifen, endoxifen and 4‐hydroxytamoxifen in healthcare institutions.  相似文献   

10.
Multiple reaction monitoring (MRM) is one of the most powerful modes of analysis in liquid chromatographic tandem mass spectrometry for quantification of low‐concentration metabolites in biological samples. The advances in mass spectrometry enabled the development of high‐resolution multiple reaction monitoring (MRMHR) and became suitable for the more specific analysis of target analytes. This is important for lipidomic studies and contributes in the medical and pharmaceutical fields, primarily in investigating alterations in cells or fluids relevant to various diseases. Therefore, this work proposes the development of the MRMHR method for quantification of circulating steroids. We focused on the determination of corticosterone, 11‐dehydrocorticosterone (11‐DHC), cortisol, cortisone, aldosterone, and progesterone concentration in serum, by using 129sv male mice exposed to chronic unpredictable stress to validate the quantification. The method was conducted according to the ANVISA normative, adopting a coefficient of variation, as well as relative standard deviation and relative error lower than 15% in linearity, intraday and interday precision, and accuracy. For cortisol, corticosterone, and their inert metabolites (cortisone and 11‐DHC), the lower limit of quantification was 3.9 ng· mL−1, while that for progesterone and aldosterone was 7.8 and 15.6 ng· mL−1, respectively. MRMHR analysis showed that animals submitted to stressors have 4.5 times more corticosterone in their serum than nonstressed mice. However, 11‐DHC concentration does not vary significantly in response to stress for these animals. The results indicate that the method can be applied for quantification of steroids in several biological samples, such as human plasma.  相似文献   

11.
A simple, fast and reliable high‐performance liquid chromatography–triple quadrupole mass spectrometry method (HPLC‐MS/MS method) was developed, validated and used for the simultaneous quantification of irinotecan and 7‐ethyl‐10‐hydroxycamptothecin (SN38) in heparinized mouse plasma. Camptothecin was used as the internal standard. A single‐step protein precipitation without evaporation and reconstitution steps was adopted as sample processing method. Our bioanalytical method was validated in compliance with the guidelines from the European Medicines Agency. The lower limit of quantification for both irinotecan and SN38 was 5 ng/mL. The calibration curves for both analytes fitted to a 1/x2 weighted linear regression model and ranged from 5 to 1000 ng/mL. The intra‐run and inter‐run precisions were within 8.6%, and the intra‐run and inter‐run accuracies were within 96.4?103.9%. Our validated bioanalytical method was successfully applied to the pharmacokinetic study in mice, in which 4 mg/kg irinotecan was intraperitoneally injected. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A simple and sensitive liquid chromatography–electrospray ionization–tandem mass spectrometry (LC‐ESI‐MS/MS) technique was developed and validated for the determination of sibutramine and its N‐desmethyl metabolites (M1 and M2) in human plasma. After extraction with methyl t‐butyl ether, chromatographic separation of analytes in human plasma was performed using a reverse‐phase Luna C18 column with a mobile phase of acetonitrile–10 mm ammonium formate buffer (50:50, v/v) and quantified by ESI‐MS/MS detection in positive ion mode. The flow rate of the mobile phase was 200 μL/min and the retention times of sibutramine, M1, M2 and internal standard (chlorpheniramine) were 1.5, 1.4, 1.3 and 0.9 min, respectively. The calibration curves were linear over the range 0.05–20 ng/mL, for sibutramine, M1 and M2. The lower limit of quantification was 0.05 ng/mL using 500 μL of human plasma. The mean accuracy and the precision in the intra‐ and inter‐day validation for sibutramine, M1 and M2 were acceptable. This LC‐MS/MS method showed improved sensitivity and a short run time for the quantification of sibutramine and its two active metabolites in plasma. The validated method was successfully applied to a pharmacokinetic study in human. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A simple, sensitive, and selective liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the simultaneous quantification of olanzapine (OLZ) and its metabolite N‐desmethylolanzapine (DMO) in human plasma for therapeutic drug monitoring. Sample preparation was performed by one‐step protein precipitation with methanol. The analytes were chromatographed on a reversed‐phase YMC‐ODS‐AQ C18 Column (2.0 × 100 mm,3 µm) by a gradient program at a flow rate of 0.30 mL/min. Quantification was performed on a triple quadrupole tandem mass spectrometer via electrospray ionization in positive ion mode. The method was validated for selectivity, linearity, accuracy, precision, matrix effect, recovery and stability. The calibration curve was linear over the concentration range 0.2–120 ng/mL for OLZ and 0.5–50 ng/mL for DMO. Intra‐ and interday precisions for OLZ and DMO were <11.29%, and the accuracy ranged from 95.23 to 113.16%. The developed method was subsequently applied to therapeutic drug monitoring for psychiatric patients receiving therapy of OLZ tablets. The method seems to be suitable for therapeutic drug monitoring of patients undergoing therapy with OLZ and might contribute to prediction of the risk of adverse reactions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A rapid and sensitive liquid chromatography with tandem mass spectrometry method has been developed and validated for the simultaneous quantification of 11 major compounds in Yuanhu‐Bazhi herb‐pair from a rat intestinal perfusion experiment, including eight alkaloids and three coumarins using diazepam as the internal standard. The analysis was performed on an Agilent Poroshell 120EC‐C18 column using a gradient elution of acetonitrile/H2O with 0.0015% formic acid and 2 mM ammonium formate buffer additive (pH 4.2). All compounds were detected by tandem mass spectrometry in positive ionization mode and quantified using multiple reaction monitoring mode. Good linearity in the related range of each compound was presented. The validation data, such as accuracy and precision, were within the required limits. The lower limit of quantification of each analyte was less than 10 ng/mL. Intra‐day and inter‐day precisions were less than 12.84%. The relative errors of accuracy were in the range of –13.31 to 13.19%. The recoveries of analytes were greater than 84.08%. The method has been successfully applied to an intestinal absorption study of major components following intestinal perfusion of Yuanhu‐Bazhi herb‐pair extract to rats.  相似文献   

15.
A high‐throughput, specific, and rapid liquid chromatography with tandem mass spectrometry method was established and validated for the simultaneous determination of atorvastatin and its two major metabolites, ortho‐hydroxyatorvastatin and para‐hydroxyatorvastatin, in human plasma. A simple salting‐out‐assisted liquid–liquid extraction using acetonitrile and a mass‐spectrometry‐friendly salt, ammonium acetate, was employed to extract the analytes from human plasma. A recovery of more than 81% for all analytes was achieved in 1 min extraction time. Chromatographic separation was performed on a Kinetex XB C18 column utilizing a gradient elution starting with a 60% of water solution (1% formic acid), followed by increasing percentages of acetonitrile. Analytes were detected on a tandem mass spectrometer equipped with an electrospray ionization source that was operated in the positive mode, using the transitions of m/z 559.3 → m/z 440.2 for atorvastatin, and m/z 575.3 → m/z 440.2 for both ortho‐ and para‐hydroxyatorvastatin. Deuterium‐labeled compounds were used as the internal standards. The method was validated over the concentration ranges of 0.0200–15.0 ng/mL for atorvastatin and ortho‐hydroxyatorvastatin, and 0.0100–2.00 ng/mL for para‐hydroxyatorvastatin with acceptable accuracy and precision. It was then successfully applied in a bioequivalence study of atorvastatin.  相似文献   

16.
We investigated the application of a high‐resolution Orbitrap mass spectrometer equipped with an electrospray ionization (ESI) source and a matrix‐assisted laser desorption/ionization‐time‐of‐flight (MALDI‐TOF) mass spectrometer to the metabolite profiling of a model small interfering RNA (siRNA) duplex TSR#34 and compared their functions and capabilities. TSR#34 duplex was incubated in human serum in vitro, and the duplex and its metabolites were then purified by ion exchange chromatography in order to remove the biological matrices. The fraction containing the siRNA duplex and its metabolites was collected and desalted and then subjected to high‐performance liquid chromatography (HPLC) equipped with a reversed phase column. The siRNA and its metabolites were separated into single strands by elevated chromatographic temperature and analyzed using the ESI‐Orbitrap or the MALDI‐TOF mass spectrometer. Using this method, the 5' and/or 3' truncated metabolites of each strand were detected in the human serum samples. The ESI‐Orbitrap mass spectrometer enabled differentiation between two possible RNA‐based sequences, a monoisotopic molecular mass difference which was less than 2 Da, with an intrinsic mass resolving power. In‐source decay (ISD) analysis using a MALDI‐TOF mass spectrometer allowed the sequencing of the RNA metabolite with characteristic fragment ions, using 2,4‐dihydroxyacetophenone (2,4‐DHAP) as a matrix. The ESI‐Orbitrap mass spectrometer provided the highest mass accuracy and the benefit of on‐line coupling with HPLC for metabolite profiling. Meanwhile, the MALDI‐TOF mass spectrometer, in combination with 2,4‐DHAP, has the potential for the sequencing of RNA by ISD analysis. The combined use of these methods will be beneficial to characterize the metabolites of therapeutic siRNA compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A novel method for the screening of 151 drugs of abuse and toxic compounds in human whole blood has been developed and validated by online solid‐phase extraction with liquid chromatography coupled to time‐of‐flight mass spectrometry. Analytes were extracted and separated by using a fully automated online solid‐phase extraction liquid chromatography system with total chromatographic run time of 26 min. Time‐of‐flight mass spectrometry screening of 151 drugs of abuse and toxic compounds was performed in a full‐scan (m/z 50–800) mode using an MSE acquisition of molecular ions and fragment ions data at two collision energies (one was 6 eV and another one was in the range of 5–45 eV). The compounds were identified based on retention times and exact mass of molecular ions and fragment ions. The limit of detection ranged from 1 to 100 ng/mL and the recovery of the method ranged from 6.3 to 163.5%. This method is proved to be a valuable screening method allowing fast and specific identification of drugs in human whole blood.  相似文献   

18.
In this paper, ultraperformance liquid chromatography/quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF/MS) and the MetaboLynx? software combined with mass defect filtering were applied to identity the metabolites of isoquercitrin using an intestinal mixture of bacteria and 96 isolated strains from human feces. The human incubated samples collected for 72 h in the anaerobic incubator and extracted with ethyl acetate were analyzed by UPLC‐Q‐TOF/MS within 10 min. The parent compound and five metabolites were identified by eight isolated strains, including Bacillus sp. 17, Veillonella sp. 23 and 32 and Bacteroides sp. 40, 41, 56, 75 and 88 in vitro. The results indicate that quercetin, acetylated isoquercitrin, dehydroxylated isoquercitrin, hydroxylated quercetin and hydroxymethylated quercetin are the major metabolites of isoquercitrin. Furthermore, a possible metabolic pathway for the biotransformation of isoquercitrin was established in intestinal flora. This study will be helpful for understanding the metabolic route of isoquercitrin and the role of different intestinal bacteria in the metabolism of natural compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
An ultra‐high‐performance liquid chromatography–mass spectrometry (UPLC/MS/MS) method was developed and validated for the quantification of trimethylamine‐N‐oxide (TMAO) simultaneously with TMAO‐related molecules l ‐carnitine and γ‐butyrobetaine (GBB) in human blood plasma. The separation of analytes was achieved using a Hydrophilic interaction liquid chromatography (HILIC)‐type column with ammonium acetate–acetonitrile as the mobile phase. TMAO determination was validated according to valid US Food and Drug Administration guidelines. The developed method was successfully applied to plasma samples from healthy volunteers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A novel, sensitive and selective ultra‐high‐performance liquid chromatography–electrospray ionization mass spectrometry method was developed and validated for the quantification of acotiamide (ACT), a first‐in‐class drug used in functional dyspepsia, in rat plasma. A simple protein precipitation method with acetonitrile as precipitating solvent was used to extract ACT from rat plasma. ACT and an internal standard (mirabegron, IS) were separated on an Agilent poroshell EC C18 column (50 × 3.0 mm, 2.7 µm) using methanol–10 mM ammonium acetate binary gradient mobile phase at a flow rate of 0.4 mL/min over 4 min run time. Detection was performed using target ions of [M + H]+ at m/z 451.2010 for ACT and m/z 397.1693 for IS in selective ion mode. The method was validated in the calibration range of 1.31–1000 ng/mL. All the validation parameters were well within the limits. The method demonstrated good performances in terms of intra‐ and inter‐day precision (3.27–12.60% CV) and accuracy (87.96–104.94%). Thus the present ultra‐high‐pressure liquid chromatograhy–high‐resolution mass spectrometry method for determination of ACT in rat plasma, is highly sensitive and rapid with a short run‐time of 4 min, can be suitable for high sample throughput and for large batches of biological samples in pharmacokinetic studies. This method can be extended to measure plasma concentrations of ACT in humans to understand drug metabolism, drug interaction and adverse effects. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号