首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non‐stoichiometric wüstite particles (Fe1?yO) are synthesized using the controlled room‐temperature hydrolysis of the organometallic precursor {Fe[N(SiMe3)2]2}. Particles stabilized by hexadecylamine with a diameter of 5 nm are obtained. For such small nanoparticles, a distorted crystallographic structure is evidenced by wide‐angle X‐ray scattering at room temperature and reported for the first time. The study of the magnetic properties indicates that these particles are composed of an antiferromagnetic core surrounded by a ferromagnetic shell. According to the Néel theory, we demonstrate that this shell consists of 1.5 % of Fe3+ ions ferromagnetically coupled with Fe2+ ions.  相似文献   

2.
A novel metal–organic framework (MOF) was fabricated by spontaneous K+‐induced supramolecular self‐assembly with the embedded tripodal ligand units. When the 3D ligand was loaded onto Fe3O4@mSiO2 core‐shell nanoparticles, it could effectively separate K+ ions from a mixture of Na+, K+, Mg2+, and Ca2+ ions through nanoparticle‐assisted MOF crystallization into a Fe3O4@mSiO2@MOF hybrid material. Excess potassium ions could be extracted because of the specific cation–π interaction between K+ and the aromatic cavity of the MOF, leading to enhanced separation efficiency and suggesting a new application for MOFs.  相似文献   

3.
In this work, we utilize the galvanic displacement synthesis and make it a general and efficient method for the preparation of Au? M (M=Au, Pd, and Pt) core–shell nanostructures with porous shells, which consist of multilayer nanoparticles. The method is generally applicable to the preparation of Au? Au, Au? Pd, and Au? Pt core–shell nanostructures with typical porous shells. Moreover, the Au? Au isomeric core–shell nanostructure is reported for the first time. The lower oxidation states of AuI, PdII, and PtII are supposed to contribute to the formation of porous core–shell nanostructures instead of yolk‐shell nanostructures. The electrocatalytic ethanol oxidation and oxygen reduction reaction (ORR) performance of porous Au? Pd core–shell nanostructures are assessed as a typical example for the investigation of the advantages of the obtained core–shell nanostructures. As expected, the Au? Pd core–shell nanostructure indeed exhibits a significantly reduced overpotential (the peak potential is shifted in the positive direction by 44 mV and 32 mV), a much improved CO tolerance (If/Ib is 3.6 and 1.63 times higher), and an enhanced catalytic stability in comparison with Pd nanoparticles and Pt/C catalysts. Thus, porous Au? M (M=Au, Pd, and Pt) core–shell nanostructures may provide many opportunities in the fields of organic catalysis, direct alcohol fuel cells, surface‐enhanced Raman scattering, and so forth.  相似文献   

4.
Hierarchical Fe3O4@poly(4‐vinylpyridine‐co‐divinylbenzene)@Au (Fe3O4@P(4‐VP–DVB)@Au) nanostructures were fabricated successfully by means of a facile two‐step synthesis process. In this study, well‐defined core–shell Fe3O4@P(4‐VP–DVB) microspheres were first prepared with a simple polymerization method, in which 4‐VP was easily polymerized on the surface of Fe3O4 nanoparticles by means of strong hydrogen‐bond interactions between ? COOH groups on poly(acrylic acid)‐modified Fe3O4 nanoparticles and a 4‐VP monomer. HAuCl4 was adsorbed on the chains of a P(4‐VP) shell and then reduced to Au nanoparticles by NaBH4, which were embedded into the P(4‐VP) shell of the composite microspheres to finally form the Fe3O4@P(4‐VP–DVB)@Au nanostructures. The obtained Fe3O4@P(4‐VP–DVB)@Au catalysts with different Au loadings were applied in the reduction of 4‐nitrophenol (4‐NP) and exhibited excellent catalytic activity (up to 3025 h?1 of turnover frequency), facile magnetic separation (up to 31.9 emu g?1 of specific saturation magnetization), and good durability (over 98 % of conversion of 4‐NP after ten runs of recyclable catalysis and almost negligible leaching of Au).  相似文献   

5.
In this study, the poly(NIPAAm–MAA)/Fe3O4 hollow latex particles were synthesized by three steps. The first step was to synthesize the poly(methyl methacrylate‐co‐methylacrylate acid) (poly(MMA‐MAA)) copolymer latex particles by the method of soapless emulsion polymerization. Following the first step, the second step was to polymerize N‐isopropylacrylamide (NIPAAm), MAA, and crosslinking agent (N,N'‐methylene‐bisacrylamide (MBA)) in the presence of poly(MMA‐MAA) latex particles to form the linear poly(MMA‐MAA)/crosslinking poly (NIPAAm‐MAA) core‐shell latex particles. After the previous processes, the core‐shell latex particles were heated in the presence of NH4OH to dissolve the linear poly(MMA‐MAA) core in order to form the poly(NIPAAm‐MAA) hollow latex particles. In the third step, Fe2+ and Fe3+ ions were introduced to bond with the ? COOH groups of MAA segments in the poly(NIPAAm‐MAA) hollow polymer latex particles. Further by a reaction with NH4OH and then Fe3O4 nanoparticles were generated in situ and the poly(NIPAAm‐MAA)/Fe3O4 magnetic composite hollow latex particles were formed. The concentrations of MAA, crosslinking agent (N,N'‐methylene bisacrylamide), and Fe3O4 nanoparticles were important factors to influence the morphology of hollow latex particles and lower critical solution temperature of poly(NIPAAm–MAA)/Fe3O4 magnetic composite hollow latex particles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
Summary: The synthesis of core‐shell particles with a poly(ε‐caprolactone) (PCL) shell and magnetite (Fe3O4) contents of between 10 wt.‐% and 41 wt.‐% proceeds by surface‐initiated ring‐opening polymerization of ε‐caprolactone to give surface‐immobilized oligomers with between 1 400 g · mol−1 and 11 500 g · mol−1. The particles are dispersable in good solvents for the PCL shell. Magnetization experiments on the resulting superparamagnetic ferrofluids give a core‐size distribution with an average diameter, dv, of about 9.7 nm.

TEM image of Fe3O4/PCL core‐shell particles cast from CHCl3 dispersion.  相似文献   


7.
Flowerlike noble‐metal‐free γ‐Fe2O3@NiO core–shell hierarchical nanostructures have been fabricated and examined as a catalyst in the photocatalytic oxidation of water with [Ru(bpy)3](ClO4)2 as a photosensitizer and Na2S2O8 as a sacrificial electron acceptor. An apparent TOF of 0.29 μmols?1 m?2 and oxygen yield of 51 % were obtained with γ‐Fe2O3@NiO. The γ‐Fe2O3@NiO core–shell hierarchical nanostructures could be easily separated from the reaction solution whilst maintaining excellent water‐oxidation activity in the fourth and fifth runs. The surface conditions of γ‐Fe2O3@NiO also remained unchanged after the photocatalytic reaction, as confirmed by X‐ray photoelectron spectroscopy (XPS).  相似文献   

8.
A “turn‐on” pattern Fe3+‐selective fluorescent sensor was synthesized and characterized that showed high fluorescence discrimination of Fe3+ over Fe2+ and other tested ions. With a 62‐fold fluorescence enhancement towards Fe3+, the probe was employed to detect Fe3+ in vivo in HeLa cells and Caenorhabditis elegans, and it was also successfully used to elucidate Fe3+ enrichment and exchange infected by innexin3 (Inx3) in hemichannel‐closed Sf9 cells.  相似文献   

9.
Cerium ions (Ce3+) can be selectively doped into the TiO2(B) core of TiO2(B)/anatase core–shell nanofibers by means of a simple one‐pot hydrothermal treatment of a starting material of hydrogen trititanate (H2Ti3O7) nanofibers. These Ce3+ ions (≈0.202 nm) are located on the (110) lattice planes of the TiO2(B) core in tunnels (width≈0.297 nm). The introduction of Ce3+ ions reduces the defects of the TiO2(B) core by inhibiting the faster growth of (110) lattice planes. More importantly, the redox potential of the Ce3+/Ce4+ couple (E°(Ce3+/Ce4+)=1.715 V versus the normal hydrogen electrode) is more negative than the valence band of TiO2(B). Therefore, once the Ce3+‐doped nanofibers are irradiated by UV light, the doped Ce3+ ions—in close vicinity to the interface between the TiO2(B) core and anatase nanoshell—can efficiently trap the photogenerated holes. This facilitates the migration of holes from the anatase shell and leaves more photogenerated electrons in the anatase nanoshell, which results in a highly efficient separation of photogenerated charges in the anatase nanoshell. Hence, this enhanced charge‐separation mechanism accelerates dye degradation and alcohol oxidation processes. The one‐pot treatment doping strategy is also used to selectively dope other metal ions with variable oxidation states such as Co2+/3+ and Cu+/2+ ions. The doping substantially improves the photocatalytic activity of the mixed‐phase nanofibers. In contrast, the doping of ions with an invariable oxidation state, such as Zn2+, Ca2+, or Mg2+, does not enhance the photoactivity of the mixed‐phase nanofibers as the ions could not trap the photogenerated holes.  相似文献   

10.
A new ratiometric fluorescent sensor ( 1 ) for Cu2+ based on 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) with di(2‐picolyl)amine (DPA) as ion recognition subunit has been synthesized and investigated in this work. The binding abilities of 1 towards different metal ions such as alkali and alkaline earth metal ions (Na+, K+, Mg2+, Ca2+) and other metal ions ( Ba2+, Zn2+, Cd2+, Fe2+, Fe3+, Pb2+, Ni2+, Co2+, Hg2+, Ag+) have been examined by UV‐vis and fluorescence spectroscopies. 1 displays high selectivity for Cu2+ among all test metal ions and a ~10‐fold fluorescence enhancement in I582/I558 upon excitation at visible excitation wavelength. The binding mode of 1 and Cu2+ is a 1:1 stoichiometry determined via studies of Job plot, the nonlinear fitting of the fluorometric titration and ESI mass.  相似文献   

11.
In this study, Ag, Ni2+, and Fe2+ immobilized on hydroxyapatite‐core‐shell γ‐Fe2O3 nanoparticles (γ‐Fe2O3@HAp‐Ag, γ‐Fe2O3@HAp‐Ni2+, and γ‐Fe2O3@HAp‐Fe2+) as a new and reusable Lewis acid magnetic nanocatalyst was successfully synthesized and reported for an atom economic, extremely facile, and environmentally benign procedure for the synthesis of highly functionalized tetrahydropyridines derivatives 4a‐t is described by one‐pot five‐component reaction of 2 equiv of aldehydes 1 , 2 equiv of amines 2 , and 1 equiv of methyl acetoacetate 3 in EtOH at room temperature in good to high yields and short reaction time. The presented methodology offers several advantages such as easy work‐up procedure, reusability of the magnetic nanocatalyst, operational simplicity, green synthesis avoiding toxic reagents and solvent, mild reaction conditions, and no tedious column chromatographic separation.  相似文献   

12.
Redox‐inactive metal ions are one of the most important co‐factors involved in dioxygen activation and formation reactions by metalloenzymes. In this study, we have shown that the logarithm of the rate constants of electron‐transfer and C−H bond activation reactions by nonheme iron(III)–peroxo complexes binding redox‐inactive metal ions, [(TMC)FeIII(O2)]+‐Mn + (Mn +=Sc3+, Y3+, Lu3+, and La3+), increases linearly with the increase of the Lewis acidity of the redox‐inactive metal ions (ΔE ), which is determined from the gzz values of EPR spectra of O2.−‐Mn + complexes. In contrast, the logarithm of the rate constants of the [(TMC)FeIII(O2)]+‐Mn + complexes in nucleophilic reactions with aldehydes decreases linearly as the ΔE value increases. Thus, the Lewis acidity of the redox‐inactive metal ions bound to the mononuclear nonheme iron(III)–peroxo complex modulates the reactivity of the [(TMC)FeIII(O2)]+‐Mn + complexes in electron‐transfer, electrophilic, and nucleophilic reactions.  相似文献   

13.
The preparation of novel one‐dimensional core–shell Fe/Fe2O3 nanowires as anodes for high‐performance lithium‐ion batteries (LIBs) is reported. The nanowires are prepared in a facile synthetic process in aqueous solution under ambient conditions with subsequent annealing treatment that could tune the capacity for lithium storage. When this hybrid is used as an anode material for LIBs, the outer Fe2O3 shell can act as an electrochemically active material to store and release lithium ions, whereas the highly conductive and inactive Fe core functions as nothing more than an efficient electrical conducting pathway and a remarkable buffer to tolerate volume changes of the electrode materials during the insertion and extraction of lithium ions. The core–shell Fe/Fe2O3 nanowire maintains an excellent reversible capacity of over 767 mA h g?1 at 500 mA g?1 after 200 cycles with a high average Coulombic efficiency of 98.6 %. Even at 2000 mA g?1, a stable capacity as high as 538 mA h g?1 could be obtained. The unique composition and nanostructure of this electrode material contribute to this enhanced electrochemical performance. Due to the ease of large‐scale fabrication and superior electrochemical performance, these hybrid nanowires are promising anode materials for the next generation of high‐performance LIBs.  相似文献   

14.
Controlled synthesis of transition‐metal hydroxides and oxides with earth‐abundant elements have attracted significant interest because of their wide applications, for example as battery electrode materials or electrocatalysts for fuel generation. Here, we report the tuning of the structure of transition‐metal hydroxides and oxides by controlling chemical reactions using an unfocused laser to irradiate the precursor solution. A Nd:YAG laser with wavelengths of 532 nm or 1064 nm was used. The Ni2+, Mn2+, and Co2+ ion‐containing aqueous solution undergoes photo‐induced reactions and produces hollow metal‐oxide nanospheres (Ni0.18Mn0.45Co0.37Ox) or core–shell metal hydroxide nanoflowers ([Ni0.15Mn0.15Co0.7(OH)2](NO3)0.2?H2O), depending on the laser wavelengths. We propose two reaction pathways, either by photo‐induced redox reaction or hydrolysis reaction, which are responsible for the formation of distinct nanostructures. The study of photon‐induced materials growth shines light on the rational design of complex nanostructures with advanced functionalities.  相似文献   

15.
α‐Fe2O3 nanoparticles are uniformly coated on the surface of α‐MoO3 nanorods through a two‐step hydrothermal synthesis method. As the anode of a lithium‐ion battery, α‐Fe2O3@α‐MoO3 core–shell nanorods exhibit extremely high lithium‐storage performance. At a rate of 0.1 C (10 h per half cycle), the reversible capacity of α‐Fe2O3@α‐MoO3 core–shell nanorods is 1481 mA h g?1 and a value of 1281 mA h g?1 is retained after 50 cycles, which is much higher than that retained by bare α‐MoO3 and α‐Fe2O3 and higher than traditional theoretical results. Such a good performance can be attributed to the synergistic effect between α‐Fe2O3 and α‐MoO3, the small size effect, one‐dimensional nanostructures, short paths for lithium diffusion, and interface spaces. Our results reveal that core–shell nanocomposites have potential applications as high‐performance lithium‐ion batteries.  相似文献   

16.
A long wavelength emission fluorescent (612 nm) chemosensor with high selectivity for H2PO4? ions was designed and synthesized according to the excited state intramolecular proton transfer (ESIPT). The sensor can exist in two tautomeric forms ('keto' and 'enol') in the presence of Fe3+ ion, Fe3+ may bind with the 'keto' form of the sensor. Furthermore, the in situ generated GY‐Fe3+ ensemble could recover the quenched fluorescence upon the addition of H2PO4? anion resulting in an off‐on‐type sensing with a detection limit of micromolar range in the same medium, and other anions, including F?, Cl?, Br?, I?, AcO?, HSO4?, ClO4? and CN? had nearly no influence on the probing behavior. The test strips based on 2‐[2‐hydroxy‐4‐(diethylamino) phenyl]‐1H‐imidazo[4,5‐b]phenazine and Fe3+ metal complex ( GY‐Fe3+ ) were fabricated, which could act as convenient and efficient H2PO4? test kits.  相似文献   

17.
The fouling and stability are two most critical limiting factors for practical applications of surface‐enhanced Raman scattering (SERS)‐based microfluidic electrophoresis device. Herein, we present a novel biomimetic nanoengineering strategy to achieve a SERS substrate featuring antifouling ability, good stability, and reliable quantitative capability. Typically, by employing tea polyphenol as the reducing agent, the substrate made of silver core‐gold shell nanostructures in situ grown on silicon wafer surface is fabricated. The core‐shell nanostructures are further embedded with internal standard molecules. Remarkably, the fabricated substrate preserves distinct SERS effects, adaptable reproducibility, and reliable quantitative ability even if the substrate is incubated with 15% H2O2, 13% HNO3, or 108 CFU/mL bacteria, or suffered from 12‐day continuous vibration at 250 rpm/min in PBS buffer. As a proof‐of‐concept application, the DNA‐functionalized substrate is capable of precise quantification of Hg2+ with a limit of detection down to ca. 1 pM even in sewage water.  相似文献   

18.
Due to the unique size effects, nanomaterials in infrared absorption have attracted much attention for their strong absorption in the infrared region. To achieve the infrared multi‐band absorption, we propose to synthesize a core‐shell structure nanomaterial consisting of NaYF4:Yb3+, Er3+ core and a layer of SiO2 as shell. A series of NaYF4:Yb3+, Er3+ nanocrystals were synthesized through hydrothermal method by adjusting the ratio of citric acid(CA)‐to‐NaOH, and the effects of CA concentration, and NaOH concentration were studied in detail. NaYF4:Yb3+, Er3+@SiO2 nanoparticles were synthesized by sol‐gel method using TEOS as silica source. The results show that the core‐shell NaYF4:Yb3+, Er3+@SiO2 nanoparticles were successfully synthesized. Up‐conversion spectra of these nanoparticles were recorded with 980 nm laser excitation under room temperature. There are no changes of the emission centers of nanoparticles before or after silica coating, but the emission intensities of nanoparticles after silica coating are weakened. Furthermore, the property of infrared multi‐band absorption was tested through ultraviolet‐visible‐near infrared spectrophotometer and infrared absorption spectra. The results illustrate that the multi‐band infrared absorption nanomaterial was successfully synthesized.  相似文献   

19.
A protein imprinting approach for the synthesis of core–shell structure nanoparticles with a magnetic core and molecularly imprinted polymer (MIP) shell was developed using a simple distillation–precipitation polymerization method. In this work, Fe3O4 magnetic nanoparticles were first synthesized through a solvothermal method and then were conveniently surface‐modified with 3‐(methacryloyloxy)propyltrimethoxylsilane as anchor molecules to donate vinyl groups. Next a high‐density MIP shell was coated onto the surface of the magnetic nanoparticles by the copolymerization of functional monomer acrylamide (AAm), cross‐linking agent N,N′‐methylenebisacrylamide (MBA), the initiator azodiisobutyronitrile (AIBN), and protein in acetonitrile heated at reflux. The morphology, adsorption, and recognition properties of the magnetic molecularly imprinted nanoparticles were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and rebinding experiments. The resulting MIP showed a high adsorption capacity (104.8 mg g?1) and specific recognition (imprinting factor=7.6) to lysozyme (Lyz). The as‐prepared Fe3O4@Lyz‐MIP nanoparticles with a mean diameter of 320 nm were coated with an MIP shell that was 20 nm thick, which enabled Fe3O4@Lyz‐MIP to easily reach adsorption equilibrium. The high magnetization saturation (40.35 emu g?1) endows the materials with the convenience of magnetic separation under an external magnetic field and allows them to be subsequently reused. Furthermore, Fe3O4@Lyz‐MIP could selectively extract a target protein from real egg‐white samples under an external magnetic field.  相似文献   

20.
The anionic iota carrageenan polysaccharide is enriched with FeII and FeIII by ion exchange against FeSO4 and FeCl3. With divalent iron, portions of polymer chains undergo a secondary structure transition from random coils to single helices. The single‐chain macromolecular conformations can be manipulated by an external magnetic field: upon exposure to 1.1 T, the helical portions exhibit 1.5‐fold stiffening and 1.1‐fold stretching, whereas the coil conformations respond much less as a result of lower contents of condensed iron ions. Along with the coil–helix transition, the trivalent iron triggers the formation of superstructures. The applicability of iron‐enriched iota carrageenan as functional ingredient for food fortification is tested by free Fe2+ and Fe3+ contents, respectively, with the most promising iota‐FeIII yielding 53 % of bound iron, which is due to the superstructures, where the ferric ions are chelated by the supramolecularly self‐assembled polymer host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号