首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Artificial enzyme mimics are a current research interest, and many nanomaterials have been found to display enzyme‐mimicking activity. However, to the best of our knowledge, there have not hitherto been any reports on the use of pure nanomaterials to construct a system capable of mimicking an enzyme cascade reaction. Herein, we describe the construction of a novel nanocomposite consisting of V2O5 nanowires and gold nanoparticles (AuNPs) through a simple and facile chemical method, in which V2O5 and AuNPs possess intrinsic peroxidase and glucose oxidase (GOx)‐like activity, respectively. Results suggest that this material can mimic the enzyme cascade reaction of horseradish peroxidase (HRP) and GOx. Based on this mechanism, a direct and selective colorimetric method for the detection of glucose has been successfully designed. Because single‐strand and double‐strand DNA (ssDNA and dsDNA) have different deactivating effects on the GOx‐like activity of AuNPs, the sensing of target complementary DNA can also be realized and disease‐associated single‐nucleotide polymorphism of DNA can be easily distinguished. Our study opens a new avenue for the use of nanomaterials in enzyme mimetics, and holds promise for the further exploration of nanomaterials in creating alternative catalytic systems to natural enzymes.  相似文献   

2.
In this study, a new glucose biosensor was fabricated by immobilizing glucose oxidase (GOx) on platinum nanoparticles (Pt NPs) decorated reduced graphene oxide (rGO)/Zn‐MOF‐74 hybrid nanomaterial. Herein, the biosensor fused the advantages of rGO with those of porous Zn‐MOF and conductive Pt NPs. This has not only enlarged the surface area and porosity for the efficient GOx immobilization and faster mass transport, but also provided favorable electrochemical features such as high current density, remarkable electron mobility through metal nanoparticles, and improved electron transfer between the components. The GOx‐rGO/Pt NPs@Zn‐MOF‐74 coated electrode displayed a linear measurement range for glucose from 0.006 to 6 mM, with a detection limit of 1.8 μM (S/N: 3) and sensitivity of 64.51 μA mM?1 cm?2. The amperometric response of the enzyme biosensor demonstrated the typical behavior of Michaelis‐Menten kinetics. The obtained satisfying sensitivity and measurement range enabled fast and accurate glucose measurement in cherry juice using the fabricated biosensor. The water‐stable Zn‐MOF‐74 demonstrated higher enzyme loading capacity and can be potent supporting material for biosensor construction.  相似文献   

3.
A novel amperometric glucose biosensor based on layer‐by‐layer (LbL) electrostatic adsorption of glucose oxidase (GOx) and dendrimer‐encapsulated Pt nanoparticles (Pt‐DENs) on multiwalled carbon nanotubes (CNTs) was described. Anionic GOx was immobilized on the negatively charged CNTs surface by alternatively assembling a cationic Pt‐DENs layer and an anionic GOx layer. Transmission electron microscopy images and ζ‐potentials proved the formation of layer‐by‐layer nanostructures on carboxyl‐functionalized CNTs. LbL technique provided a favorable microenvironment to keep the bioactivity of GOx and prevent enzyme molecule leakage. The excellent electrocatalytic activity of CNTs and Pt‐DENs toward H2O2 and special three‐dimensional structure of the enzyme electrode resulted in good characteristics such as a low detection limit of 2.5 μM, a wide linear range of 5 μM–0.65 mM, a short response time (within 5 s), and high sensitivity (30.64 μA mM?1 cm?2) and stability (80% remains after 30 days).  相似文献   

4.
将NaAuCl4、葡萄糖氧化酶(GOx)和葡萄糖混合,借一步酶促反应制得吸附GOx的金纳米颗粒(AuNPs),再通过滴干修饰法研制了Nafion/GOx-AuNPs修饰的玻碳(GC)电极,并考察了该酶电极上GOx的直接电化学和生物传感性能. 这种酶法合成的GOx-AuNPs复合物有良好的酶直接电化学活性,也保持了GOx的生物活性,似可归因于酶法合成的纳米金更接近酶氧化还原活性中心的缘故. 该酶电极在-0.4 V(vs. SCE)电位下,其稳态电流下降与葡萄糖浓度(0.5 4 mmol·L-1)成正比,检测下限0.2 mol·L-1.  相似文献   

5.
The gold nanostar@silica core–shell nanoparticles conjugated with glucose oxidase (GOx) enzyme molecules have been developed as the surface-enhanced Raman scattering (SERS) biosensor for label-free detection of glucose. The surface-immobilized GOx enzyme catalyzes the oxidation of glucose, producing hydrogen peroxide. Under laser excitation, the produced H2O2 molecules near the Au nanostar@silica nanoparticles generate a strong SERS signal, which is used to measure the glucose concentration. The SERS signal of nanostar@silica∼GOx nanoparticle-based sensing assay shows the dynamic response to the glucose concentration range from 25 μM to 25 mM in the aqueous solution with the limit of detection of 16 μM. The sensing assay does not show any interference when glucose co-exists with both ascorbic acid and uric acid. The sensor can be applied to a saliva sample.  相似文献   

6.
Traditional colorimetric glucose biosensor generally involves complex assay procedures. Free labile enzymes and peroxidase substrates are used separately for triggering a chromogenic reaction. These limits result in inferior enzyme stability and defective enzymatic catalytic efficiency, making it hard to routinely utilize them for the direct and fast test of glucose. In this work, we provide an all-inclusive substrates/enzymes nanoparticle employed 3,3′5,5′-tetramethylbenzidine (TMB) as chromogenic substrates and glucose oxidase (GOx)/horseradish peroxidase (HRP) as signal amplifier enzymes (TMB-GH NPs) by the molecule self-assembly technique. The “all-inclusive” nanoparticles can realize the tandem colorimetric reactions, and the oxidation product of TMB (ox-TMB) exhibits a strong NIR laser-driven photothermal effect, thus allowing quantitative photothermal detection of glucose. Owing to the restriction of the molecular motion of GOx, HRP, and TMB, the distance of mass transfer between substrates was shortened largely, leading to improved catalytic activity for glucose. Overall, our strategy will simplify the analysis procedure, furthermore, these integrated nanoparticles not only display higher stability and activity than that of the free GOx/HRP system and possesses an excellent performance for colorimetric and photothermal bioassay of glucose simultaneously. We believe that this unique technique will give good inspirations to develop simple and precise methods for bioassay.  相似文献   

7.
A simple wet‐chemical strategy for the synthesis of 3,4,9,10‐perylenetetracarboxylic acid (PTCA)/hemin nanocomposites through π–π interactions is demonstrated. Significantly, the hemin successfully conciliates PTCA redox activity with a pair of well‐defined redox peaks and intrinsic peroxidase‐like activity, which provides potential application of the PTCA self‐derived redox activity as redox probes. Additionally, PTCA/hemin nanocomposites exhibit a good membrane‐forming property, which not only avoids the conventional fussy process for redox probe immobilization, but also reduces the participation of the membrane materials that act as a barrier of electron transfer. On the basis of these unique properties, a pseudobienzyme‐channeling amplified electrochemical aptasensor is developed that is coupled with glucose oxidase (GOx) for thrombin detection by using PTCA/hemin nanocomposites as redox probes and electrocatalysts. With the addition of glucose to the electrolytic cell, the GOx on the aptasensor surface bioelectrocatalyzed the reduction of glucose to produce H2O2, which in turn was electrocatalyzed by the PTCA/hemin nanocomposites. Cascade schemes, in which an enzyme is catalytically linked to another enzyme, can produce signal amplification and therefore increase the biosensor sensitivity. As a result, a linear relationship for thrombin from 0.005 to 20 nM and a detection limit of 0.001 nM were obtained.  相似文献   

8.
The integration of a separation capillary for capillary electrophoresis (CE) with an on‐column enzyme reaction for selective determination of the enzyme substrate is described. Enzyme immobilization is achieved by electrostatic assembly of poly(diallydimethylammonium chloride) (PDDA) followed by adsorption of a mixture of the negatively charged enzyme glucose oxidase (GOx) and anionic poly(styrenesulfonate) (PSS). The reaction of glucose with the GOx produces hydrogen peroxide which migrates the length of the capillary and is detected amperometrically at the capillary outlet. The enzyme reaction occurs during a capillary separation, allowing selective determination of the substrate in complex samples without the need for pre‐ or post‐separation chemical modification of the analyte. The enzyme reactor is found to have an optimal response to glucose when a 5 : 1 mixture of PSS:GOx is used. Under these conditions the limit of detection for glucose is found to be between 5.0×10?4 and 1.3×10?3 M, dependent upon the inner‐diameter of the capillary. The apparent Michaelis‐Menten constant for the enzyme reaction was determined to be 0.047 (±0.001) M and 0.0037 (±0.0007) M for a 50 and 10 μm inner‐diameter capillaries, respectively. These results indicate that the enzyme reaction is efficient, having enzyme kinetics similar to that of a reaction occurring in solution. This enzyme immobilization method was also applied to another enzyme, glutamate oxidase, yielding similar results.  相似文献   

9.
Nanoporous copper (NPC) obtained by dealloying CuAl alloy is used as both three-dimensional template and reducing agent for the fabrication of nanoporous PdCu alloy with hollow ligaments by a simple galvanic replacement reaction with H2PdCl4 aqueous solution. Electron microscopy and X-ray diffraction characterizations demonstrate that after the replacement reaction, the ligaments become hollow tubular structure and the ligament shell is also comprised of small pores and nanoparticles with a typical size of ∼4 nm (third order porosity). The as-prepared nanotubular mesoporous PdCu alloy (NM-PdCu) structure exhibits remarkably improved electrocatalytic activity towards the oxidation of formic acid and H2O2 compared with nanoporous Pd (NP-Pd), and can be used for sensitive electrochemical sensing applications. After coupled with glucose oxidase (GOx), the enzyme modified NM-PdCu electrode can sensitively detect glucose over a wide linear range (0.5–20 mM).  相似文献   

10.
An exploration of gold nanoparticles–bacterial cellulose nanofibers (Au‐BC) nanocomposite as a platform for amperometric determination of glucose is presented. Two enzymes, glucose oxidase (GOx) and horseradish peroxidase (HRP) were immobilized in Au‐BC nanocomposite modified glassy carbon electrode at the same time. A sensitive and fast amperometric response to glucose was observed in the presence of electron mediator (HQ). Both of GOx and HRP kept their biocatalytic activities very well in Au‐BC nanocomposite. The detection limit for glucose in optimized conditions was as low as 2.3 µM with a linear range from 10 µM to 400 µM. The biosensor was successfully applied to the determination of glucose in human blood samples.  相似文献   

11.
The change in the activity of glucose oxidase subjected to an asymmetrical alternating current (AC) electric field is investigated via horseradish peroxidase (HRP)‐coupled bioassay. The effect of the amplitude, frequency and enzyme concentration have been shown to affect the enzyme activity towards glucose oxidation. The decrease in the enzyme activity is directly related to the change in pH and temperature of the GOx solution during AC electrolysis. The enzyme activity reduces with increasing amplitude, enzyme concentration and decreasing frequency. Results from UV‐vis, FT‐IR and UV CD spectroscopy showed that the AC treated GOx samples undergo structural modifications.  相似文献   

12.
Efficient electrical communication between redox proteins and electrodes is a critical issue in the operation and development of amperometric biosensors. The present study explores the advantages of a nanostructured redox‐active polyelectrolyte–surfactant complex containing [Os(bpy)2Clpy]2+ (bpy=2,2′‐bipyridine, py= pyridine) as the redox centers and gold nanoparticles (AuNPs) as nanodomains for boosting the electron‐transfer propagation throughout the assembled film in the presence of glucose oxidase (GOx). Film structure was characterized by grazing‐incidence small‐angle X‐ray scattering (GISAXS) and atomic force microscopy (AFM), GOx incorporation was followed by surface plasmon resonance (SPR) and quartz‐crystal microbalance with dissipation (QCM‐D), whereas Raman spectroelectrochemistry and electrochemical studies confirmed the ability of the entrapped gold nanoparticles to enhance the electron‐transfer processes between the enzyme and the electrode surface. Our results show that nanocomposite films exhibit five‐fold increase in current response to glucose compared with analogous supramolecular AuNP‐free films. The introduction of colloidal gold promotes drastic mesostructural changes in the film, which in turn leads to a rigid, amorphous interfacial architecture where nanoparticles, redox centers, and GOx remain in close proximity, thus improving the electron‐transfer process.  相似文献   

13.
本文以有效提高生物分子包埋率为目的,基于生物/化学同步聚合的新方法制备了一种新型纤维蛋白聚合物基纳米复合物,并研究了该复合物修饰电极的传感性能。该方法在凝血仿生聚合的同时,采用NaAuCl4作为氧化剂化学氧化聚合生成聚多巴胺(PDA),在PDA膜内原位合成纳米金(AuNPs),同时在PDA-纤维蛋白凝胶生长时包埋葡萄糖氧化酶(GOx)。生物/化学同步聚合法操作简单,条件温和。该纳米复合物引入了AuNPs的优异性质,有效提升了GOx的包埋量,所制电化学生物传感器对葡萄糖的检测灵敏度高达117μA/(cm2·mmol/L),检测限为57nmol/L。  相似文献   

14.
In this article, poly[poly(ethyleneglycol) acrylate] (polyPEG‐A) with mercaptothiazoline ester terminal group was synthesized directly by reversible addition fragmentation chain transfer (RAFT) polymerization using a mercaptothiazoline ester functional RAFT agent. The functional polyPEG‐A was then conjugated to glucose oxidase (GOx) via surface‐tethered amino groups through covalent amide coupling. Sorensenformaltitration assay revealed that GOx retained ~14 free amino groups available for covalent modification. The conjugation reaction turned out to be efficient and mild. Colorimetric method was applied to evaluate the enzymatic activity of native GOx and its derivatives by introducing another enzyme, horseradish peroxidase. The modified GOx with polymeric chains exhibited reduced enzymatic activity toward the catalytical oxidation of glucose, but with significantly increased thermal stability and elongated lifetime. When GOx was modified with polyPEG‐A [molecular weight (MW), 45,000; polydispersity index, 1.12] the enzymatic activity was decreased to 37 U/mg, only 29% left. However, when incubated at 25 °C the modified GOx still retained 9.6% of its original bioactivity after 60 days, whereas the native GOx only lived for 29 days. The more polymer chains or the longer polymer chain attached, the more reduction of the enzymatic activity resulted, however, the longer the lifetime of the enzyme obtained. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
α‐Synuclein (α‐SYN) is a very important neuronal protein that is associated with Parkinson’s disease. In this paper, we utilized Au‐doped TiO2 nanotube arrays to design a photoelectrochemical immunosensor for the detection of α‐SYN. The highly ordered TiO2 nanotubes were fabricated by using an electrochemical anodization technique on pure Ti foil. After that, a photoelectrochemical deposition method was exploited to modify the resulting nanotubes with Au nanoparticles, which have been demonstrated to facilitate the improvement of photocurrent responses. Moreover, the Au‐doped TiO2 nanotubes formed effective antibody immobilization arrays and immobilized primary antibodies (Ab1) with high stability and bioactivity to bind target α‐SYN. The enhanced sensitivity was obtained by using {Ab2‐Au‐GOx} bioconjugates, which featured secondary antibody (Ab2) and glucose oxidase (GOx) labels linked to Au nanoparticles for signal amplification. The GOx enzyme immobilized on the prepared immunosensor could catalyze glucose in the detection solution to produce H2O2, which acted as a sacrificial electron donor to scavenge the photogenerated holes in the valence band of TiO2 nanotubes upon irradiation of the other side of the Ti foil and led to a prompt photocurrent. The photocurrents were proportional to the α‐SYN concentrations, and the linear range of the developed immunosensor was from 50 pg mL?1 to 100 ng mL?1 with a detection limit of 34 pg mL?1. The proposed method showed high sensitivity, stability, reproducibility, and could become a promising technique for protein detection.  相似文献   

16.
Nanomolar concentrations of thrombin were electrochemically monitored using heterogeneous switch‐on and homogeneous switch‐off approaches that incorporated ferrocenyl aptamers. For the first time, the heterogeneous approach was coupled to a glucose/glucose oxidase (GOx) amplification‐regeneration system which increased its sensitivity by 2 folds with detection limits of 4.3 nM and 2.5 nM in the absence and presence of glucose/GOx, respectively. We also present a new homogeneous system involving the ferrocenyl aptamer binding thrombin in solution causing a significant decrease in its diffusion coefficient. Thus the ferrocene anodic current decreased at an unmodified gold electrode with detection limit of 3.9 nM and 12 times larger linear range than the heterogeneous method.  相似文献   

17.
联吡啶钌(Ru(bpy)■)拥有优良的电致化学发光(ECL)性能,但其较好的水溶性使其固载面临巨大问题。该文制备了Pt纳米粒子与Ru(bpy)■的复合物(Pt NPs-Ru),将其修饰于电极并进一步固载葡萄糖氧化酶(GOx)制得传感器。基于H2O2对Ru(bpy)■-三乙胺体系ECL信号的猝灭作用,随着葡萄糖浓度的增加,其在GOx的催化下原位产生的H2O2量增多,导致ECL信号逐渐减弱,从而实现葡萄糖的检测。ECL强度与葡萄糖浓度的对数在1.0×10-8~5.0×10-5 mol/L范围内呈良好的线性关系,检出限低至5.2×10-9 mol/L。传感器具有好的稳定性和高的选择性。Pt NPs-Ru复合物为ECL传感器的构建提供了良好平台,为葡萄糖检测提供了新方法。  相似文献   

18.
A type of novel electroanalytical sensing nanobiocomposite material was prepared by electropolymerization of pyrrole containing poly(amidoamine) dendrimers‐encapsulated platinum nanoparticles (Pt‐PAMAM), and glucose oxidase (GOx). The Pt nanoparticles encapsulated in PAMAM are nearly monodisperse with an average diameter of 3 nm, and they provide electrical conductivity. Polypyrrole acts as a polymer backbone to give stable and homogeneous cast thin films, and it also defines the electrical conductivity. Both Polypyrrole and PAMAM can provide a favorable microenvironment to keep the bioactivity of enzymes such as glucose oxidase. The homogeneity of GOx/Pt‐PAMAM‐PPy nanobiocomposite films was characterized by atomic force microscopy (AFM). Amperometric biosensors fabricated with these materials were characterized electrochemically using cyclic voltammetry (CV), electrochemical impedance spectra (EIS) and amperometric measurements in the presence of hydrogen peroxide or glucose. All those show the resultant biosensor sensitivity was strongly enhanced within the nanobiocomposite film. The optimized glucose biosensor displayed a sensitivity of 164 μA mM?1 cm?1, a linear range of 0.2 to 600 μM, a detection limit of 10 nM, and a response time of <3 s.  相似文献   

19.
A novel complex material was fabricated by three steps. In the first step, gold nanoparticle (Aunano) was prepared with the method of chemistry and dialysis. In the second step, 4‐aminothiophenol (AT) was encapsulated in the cavity of β‐cyclodextrin and formed inclusion complex, cyclodextrin/4‐aminothiophenol (CD/AT). And then inclusion complex was adsorbed to the surface of Aunano based on the bond of Au‐S interaction. In the last step, a complex material, cyclodextrin/poly(4‐aminothiophenol)‐Au nanoparticles (CD/PAT‐Aunano) was obtained by the polymerizing in the acid solution initiated by chlorauric acid. The CD/PAT‐Aunano has spherical nanostructure with the average diameter of 55 nm. Glucose oxidase (GOx) was anchored with this complex material and direct electrochemistry of GOx was achieved. A couple of stable and well‐defined redox peaks were observed with the formal potential (E0′) of ‐0.488 V (vs. SCE) in a pH 6.98 buffer solution. The GOx modified electrode also exhibited an excellent electrocatalytic activity to the reduction of glucose, a linearity range for determination of glucose is from 0.25 mM to 16.0 mM with a detection limit of 0.09 mM (S/N = 3). This protocol had potential application to fabricate the third‐generation biosensor.  相似文献   

20.
A new glucose biosensor, based on the modification of highly ordered Au nanowire arrays (ANs) with Pt nanoparticles (PtNPs) and subsequent surface adsorption of glucose oxidase (GOx), is described. Morphologies of ANs and ANs/PtNPs were observed by scanning electron microscope. The electrochemical properties of ANs, ANs/GOx, ANs/PtNPs, and ANs/PtNPs/GOx electrodes were compared by cyclic voltammetry. Results obtained from comparison of the cyclic voltammograms show that PtNPs modification enhances electrochemical catalytic activity of ANs to H2O2. Hence, ANs/PtNPs/GOx biosensor exhibits much better sensing to glucose than ANs/GOx. Optimum deposition time of ANs/PtNPs/GOx biosensor for both amperometric and potentiometric detection of glucose was achieved to be 150 s at deposition current of 1?×?10?6 A. A sensitivity of 0.365 μA/mM with a linear range from 0.1 to 7 mM was achieved for amperometric detection; while for potentiometric detection the sensitivity is 33.4 mV/decade with a linear range from 0.1 to 7 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号