首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrochemical conversion of CO2 into energy‐dense liquids, such as formic acid, is desirable as a hydrogen carrier and a chemical feedstock. SnOx is one of the few catalysts that reduce CO2 into formic acid with high selectivity but at high overpotential and low current density. We show that an electrochemically reduced SnO2 porous nanowire catalyst (Sn‐pNWs) with a high density of grain boundaries (GBs) exhibits an energy conversion efficiency of CO2‐into‐HCOOH higher than analogous catalysts. HCOOH formation begins at lower overpotential (350 mV) and reaches a steady Faradaic efficiency of ca. 80 % at only −0.8 V vs. RHE. A comparison with commercial SnO2 nanoparticles confirms that the improved CO2 reduction performance of Sn‐pNWs is due to the density of GBs within the porous structure, which introduce new catalytically active sites. Produced with a scalable plasma synthesis technology, the catalysts have potential for application in the CO2 conversion industry.  相似文献   

2.
Electrochemically reducing CO2 to valuable fuels or feedstocks is recognized as a promising strategy to simultaneously tackle the crises of fossil fuel shortage and carbon emission. Sn-based catalysts have been widely studied for electrochemical CO2 reduction reaction (CO2RR) to make formic acid/formate, which unfortunately still suffer from low activity, selectivity and stability. In this work, halogen (F, Cl, Br or I) was introduced into the Sn catalyst by a facile hydrolysis method. The presence of halogen was confirmed by a collection of ex situ and in situ characterizations, which rendered a more positive valence state of Sn in halogen-incorporated Sn catalyst as compared to unmodified Sn under cathodic potentials in CO2RR and therefore tuned the adsorption strength of the key intermediate (*OCHO) toward formate formation. As a result, the halogen-incorporated Sn catalyst exhibited greatly enhanced catalytic performance in electrochemical CO2RR to produce formate.  相似文献   

3.
The direct formic acid fuel cell is an emerging energy conversion device for which palladium is considered as the state‐of‐the‐art anode catalyst. In this communication, we show that the activity and stability of palladium for formic acid oxidation can be significantly enhanced using nickel phosphide (Ni2P) nanoparticles as a cocatalyst. X‐ray photoelectron spectroscopy (XPS) reveals a strong electronic interaction between Ni2P and Pd. A direct formic acid fuel cell incorporating the best Pd–Ni2P anode catalyst exhibits a power density of 550 mW cm?2, which is 3.5 times of that of an analogous device using a commercial Pd anode catalyst.  相似文献   

4.
Bimetallic palladium–nickel (PdNi2) alloy catalyst has been prepared for the electrooxidation of formic acid through a simple electrodepositing approach. Scanning Electron Microscopy and X-ray Diffraction revealed that the particle morphology and the crystalline lattice of PdNi2 alloy were highly different from those of Pd. Although the PdNi2 catalyst had less noble Pd content, the cyclic voltammetry and chronoamperometry results clearly demonstrated that its catalytic activity was significantly higher than that of Pd. The novel enhancement of catalytic activity was mainly ascribed to the weak absorption strength of intermediates on Pd through the interaction between Pd and additive Ni, which facilitated the formic acid oxidation through direct pathway.  相似文献   

5.
Capture of CO2 and its conversion into organic feedstocks are increasingly needed as society moves towards a renewable energy economy. Here, a hydride-assisted selective reduction pathway is proposed for the conversion of CO2 to formic acid (FA) over SnO2 monomers and dimers. Our density functional theory calculations infer a strong chemisorption of CO2 on SnO2 clusters forming a carbonate structure, whereas heterolytic cleavage of H2 provides a new pathway for the selective reduction of CO2 to formic acid at low overpotential. Among the two investigated pathways for reduction of CO2 to HCOOH, the hydride pinning pathway is found promising with a unique selectivity for HCOOH. The negatively-charged hydride forms on the cluster during the dissociation of H2 and facilitates the formation of a formate intermediate, which determines the selectivity for FA over the alternative CO and H2 evolution reaction. It is confirmed that SnO2 clusters exhibit a different catalytic behaviour from their surface equivalents, thus offering promise for future work investigating the reduction of CO2 to FA via a hydride pinning pathway at low overpotential and CO2 capturing.  相似文献   

6.
Simultaneously improving energy efficiency (EE) and material stability in electrochemical CO2 conversion remains an unsolved challenge. Among a series of ternary Sn‐Ti‐O electrocatalysts, 3D ordered mesoporous (3DOM) Sn0.3Ti0.7O2 achieves a trade‐off between active‐site exposure and structural stability, demonstrating up to 71.5 % half‐cell EE over 200 hours, and a 94.5 % Faradaic efficiency for CO at an overpotential as low as 430 mV. DFT and X‐ray absorption fine structure analyses reveal an electron density reconfiguration in the Sn‐Ti‐O system. A downshift of the orbital band center of Sn and a charge depletion of Ti collectively facilitate the dissociative adsorption of the desired intermediate COOH* for CO formation. It is also beneficial in maintaining a local alkaline environment to suppress H2 and formate formation, and in stabilizing oxygen atoms to prolong durability. These findings provide a new strategy in materials design for efficient CO2 conversion and beyond.  相似文献   

7.
Electrochemically reducing CO2 into fuels using renewable electricity is a contemporary global challenge that requires significant advances in catalyst design. Photodeposition techniques were used to screen ternary alloys of Cu‐Zn‐Sn, which includes brass and bronze, for the electrocatalytic reduction of CO2 to CO and formate. This analysis identified Cu0.2Zn0.4Sn0.4 and Cu0.2Sn0.8 to be capable of reaching Faradaic efficiencies of >80 % for CO and formate formation, respectively, and capable of achieving partial current densities of 3 mA cm−2 at an overpotential of merely 200 mV.  相似文献   

8.
High-temperature water reactions to reduce carbon dioxide were carried out by using an organic reductant and a series of metals and metal oxides as catalysts, as well as activated carbon (C). As CO2 source, sodium bicarbonate and ammonium carbamate were used. Glucose was the reductant. Cu, Ni, Pd/C 5%, Ru/C 5%, C, Fe2O3 and Fe3O4 were the catalysts tested. The products of CO2 reduction were formic acid and other subproducts from sugar hydrolysis such as acetic acid and lactic acid. Reactions with sodium bicarbonate reached higher yields of formic acid in comparison to ammonium carbamate reactions. Higher yields of formic acid (53% and 52%) were obtained by using C and Fe3O4 as catalysts and sodium bicarbonate as carbon source. Reactions with ammonium carbamate achieved a yield of formic acid up to 25% by using Fe3O4 as catalyst. The origin of the carbon that forms formic acid was investigated by using NaH13CO3 as carbon source. Depending on the catalyst, the fraction of formic acid coming from the reduction of the isotope of sodium bicarbonate varied from 32 to 81%. This fraction decreased in the following order: Pd/C 5% > Ru/C 5% > Ni > Cu > C ≈ Fe2O3 > Fe3O4.  相似文献   

9.
A single device combining the functions of a CO2 electrolyzer and a formate fuel cell is a new option for carbon‐neutral energy storage but entails rapid, reversible and stable interconversion between CO2 and formate over a single catalyst electrode. We report a new catalyst with such functionalities based on a Pb–Pd alloy system that reversibly restructures its phase, composition, and morphology and thus alters its catalytic properties under controlled electrochemical conditions. Under cathodic conditions, the catalyst is relatively Pb‐rich and is active for CO2‐to‐formate conversion over a wide potential range; under anodic conditions, it becomes relatively Pd‐rich and gains stable catalytic activity for formate‐to‐CO2 conversion. The bifunctional activity and superior durability of our Pb–Pd catalyst leads to the first proof‐of‐concept demonstration of an electrochemical cell that can switch between the CO2 electrolyzer/formate fuel cell modes and can stably operate for 12 days.  相似文献   

10.
Electrochemical conversion of CO2 into fuels using electricity generated from renewable sources helps to create an artificial carbon cycle. However, the low efficiency and poor stability hinder the practical use of most conventional electrocatalysts. In this work, a 2D hierarchical Pd/SnO2 structure, ultrathin Pd nanosheets partially capped by SnO2 nanoparticles, is designed to enable multi‐electron transfer for selective electroreduction of CO2 into CH3OH. Such a structure design not only enhances the adsorption of CO2 on SnO2, but also weakens the binding strength of CO on Pd due to the as‐built Pd–O–Sn interfaces, which is demonstrated to be critical to improve the electrocatalytic selectivity and stability of Pd catalysts. This work provides a new strategy to improve electrochemical performance of metal‐based catalysts by creating metal oxide interfaces for selective electroreduction of CO2.  相似文献   

11.
Highly monodisperse spherical 3 nm Pd–Cu alloy nanoparticles (NPs) were synthesized in high yield through the coreduction of [Pd(acac)2] (acac=acetylacetonate) and [Cu(acac)2] in nonhydrolytic solutions by using trioctylamine and oleic acid. The relative compositions of Pd and Cu could be tuned by controlling the molar ratios between the metal precursors in the raw solutions. The carbon‐supported Pd–Cu NPs (Pd–Cu/C) were chemically dealloyed by acetic acid washing, which resulted in the formation of porous structures. The prepared Pd–Cu/C catalysts exhibited at least threefold enhancement of Pd mass activities compared with a commercial Pd/C catalyst toward formic acid oxidation in an acidic medium, and also showed outstanding electrocatalytic stabilities. The improved electrocatalytic properties of the Pd–Cu NPs are attributed to the presence of a large number of active sites on their surfaces owing to their small particle sizes and chemically dealloyed porous structures.  相似文献   

12.
The sustainable, selective direct hydroxylation of arenes, such as benzene to phenol, is an important research challenge. An electrocatalytic transformation using formic acid to oxidize benzene and its halogenated derivatives to selectively yield aryl formates, which are easily hydrolyzed by water to yield the corresponding phenols, is presented. The formylation reaction occurs on a Pt anode in the presence of [CoIIIW12O40]5? as a catalyst and lithium formate as an electrolyte via formation of a formyloxyl radical as the reactive species, which was trapped by a BMPO spin trap and identified by EPR. Hydrogen was formed at the Pt cathode. The sum transformation is ArH+H2O→ArOH+H2. Non‐optimized reaction conditions showed a Faradaic efficiency of 75 % and selective formation of the mono‐oxidized product in a 35 % yield. Decomposition of formic acid into CO2 and H2 is a side‐reaction.  相似文献   

13.
Associating a metal‐based catalyst to a carbon‐based nanomaterial is a promising approach for the production of solar fuels from CO2. Upon appending a CoII quaterpyridine complex [Co(qpy)]2+ at the surface of multi‐walled carbon nanotubes, CO2 conversion into CO was realized in water at pH 7.3 with 100 % catalytic selectivity and 100 % Faradaic efficiency, at low catalyst loading and reduced overpotential. A current density of 0.94 mA cm?2 was reached at ?0.35 V vs. RHE (240 mV overpotential), and 9.3 mA cm?2 could be sustained for hours at only 340 mV overpotential with excellent catalyst stability (89 095 catalytic cycles in 4.5 h), while 19.9 mA cm?2 was met at 440 mV overpotential. Such a hybrid material combines the high selectivity of a homogeneous molecular catalyst to the robustness of a heterogeneous material. Catalytic performances compare well with those of noble‐metal‐based nano‐electrocatalysts and atomically dispersed metal atoms in carbon matrices.  相似文献   

14.
Photoelectrochemical (PEC) reduction of carbon dioxide (CO2) is a potential method for production of fuels and chemicals from a C1 feedstock accumulated in the atmosphere. However, the low solubility of CO2 in water, and complicated processes associated with capture and conversion, render CO2 conversion inefficient. A new concept is proposed in which a PEC system is used to capture and convert CO2 into formic acid. The process is assisted by an ionic liquid (1‐aminopropyl‐3‐methylimidazolium bromide) aqueous solution, which functions as an absorbent and electrolyte at ambient temperature and pressure. Within this PEC reduction strategy, the ionic liquid plays a critical role in promoting the conversion of CO2 to formic acid and suppressing the reduction of H2O to H2. At an applied voltage of 1.7 V, the Faradaic efficiency for formic acid production is as high as 94.1 % and the electro‐to‐chemical efficiency is 86.2 %.  相似文献   

15.
The electrochemical CO2 reduction reaction (CO2RR) to give C1 (formate and CO) products is one of the most techno‐economically achievable strategies for alleviating CO2 emissions. Now, it is demonstrated that the SnOx shell in Sn2.7Cu catalyst with a hierarchical Sn‐Cu core can be reconstructed in situ under cathodic potentials of CO2RR. The resulting Sn2.7Cu catalyst achieves a high current density of 406.7±14.4 mA cm?2 with C1 Faradaic efficiency of 98.0±0.9 % at ?0.70 V vs. RHE, and remains stable at 243.1±19.2 mA cm?2 with a C1 Faradaic efficiency of 99.0±0.5 % for 40 h at ?0.55 V vs. RHE. DFT calculations indicate that the reconstructed Sn/SnOx interface facilitates formic acid production by optimizing binding of the reaction intermediate HCOO* while promotes Faradaic efficiency of C1 products by suppressing the competitive hydrogen evolution reaction, resulting in high Faradaic efficiency, current density, and stability of CO2RR at low overpotentials.  相似文献   

16.
The use of formic acid (FA) to produce molecular H2 is a promising means of efficient energy storage in a fuel‐cell‐based hydrogen economy. To date, there has been a lack of heterogeneous catalyst systems that are sufficiently active, selective, and stable for clean H2 production by FA decomposition at room temperature. For the first time, we report that flexible pyridinic‐N‐doped carbon hybrids as support materials can significantly boost the efficiency of palladium nanoparticle for H2 generation; this is due to prominent surface electronic modulation. Under mild conditions, the optimized engineered Pd/CN0.25 catalyst exhibited high performance in both FA dehydrogenation (achieving almost full conversion, and a turnover frequency of 5530 h?1 at 25 °C) and the reversible process of CO2 hydrogenation into FA. This system can lead to a full carbon‐neutral energy cycle.  相似文献   

17.
The efficient fixation of excess CO2 from the atmosphere to yield value‐added chemicals remains crucial in response to the increasing levels of carbon emission. Coupling enzymatic reactions with electrochemical regeneration of cofactors is a promising technique for fixing CO2, while producing biomass which can be further transformed into biofuels. Herein, a bioelectrocatalytic system was established by depositing crystallites of a mesoporous metal–organic framework (MOF), termed NU‐1006, containing formate dehydrogenase, on a fluorine‐doped tin oxide glass electrode modified with Cp*Rh(2,2′‐bipyridyl‐5,5′‐dicarboxylic acid)Cl2 complex. This system converts CO2 into formic acid at a rate of 79±3.4 mm h?1 with electrochemical regeneration of the nicotinamide adenine dinucleotide cofactor. The MOF–enzyme composite exhibited significantly higher catalyst stability when subjected to non‐native conditions compared to the free enzyme, doubling the formic acid yield.  相似文献   

18.
The electrochemical CO2 reduction reaction (CO2RR) on RuO2 and RuO2-based electrodes has been shown experimentally to produce high yields of methanol, formic acid and/or hydrogen while methane formation is not detected. This CO2RR selectivity on RuO2 is in stark contrast to copper metal electrodes that produce methane and hydrogen in the highest yields whereas methanol is only formed in trace amounts. Density functional theory calculations on RuO2(110) where only adsorption free energies of intermediate species are considered, i.e. solvent effects and energy barriers are not included, predict however, that the overpotential and the potential limiting step for both methanol and methane are the same. In this work, we use both ab initio molecular dynamics simulations at room temperature and total energy calculations to improve the model system and methodology by including both explicit solvation effects and calculations of proton–electron transfer energy barriers to elucidate the reaction mechanism towards several CO2RR products: methanol, methane, formic acid, CO and methanediol, as well as for the competing H2 evolution. We observe a significant difference in energy barriers towards methane and methanol, where a substantially larger energy barrier is calculated towards methane formation than towards methanol formation, explaining why methanol has been detected experimentally but not methane. Furthermore, the calculations show why RuO2 also catalyzes the CO2RR towards formic acid and not CO(g) and methanediol, in agreement with experimental results. However, our calculations predict RuO2 to be much more selective towards H2 formation than for the CO2RR at any applied potential. Only when a large overpotential of around −1 V is applied, can both formic acid and methanol be evolved, but low faradaic efficiency is predicted because of the more facile H2 formation.

Energy barriers are calculated for the electrochemical CO2 reduction reaction on the RuO2(110) surface towards methanol, methane, formic acid, methanediol, CO and the competing H2 formation and compared with experimental literature.  相似文献   

19.
Electroreduction of CO2 into formic acid (HCOOH) is of particular interest as a hydrogen carrier and chemical feedstock. However, its conversion is limited by a high overpotential and low stability due to undesirable catalysts and electrode design. Herein, an integrated 3D bismuth oxide ultrathin nanosheets/carbon foam electrode is designed by a sponge effect and N-atom anchor for energy-efficient and selective electrocatalytic conversion of CO2 to HCOOH for the first time. Benefitting from the unique 3D array foam architecture for highly efficient mass transfer, and optimized exposed active sites, as confirmed by density functional theory calculations, the integrated electrode achieves high electrocatalytic performance, including superior partial current density and faradaic efficiency (up to 94.1 %) at a moderate overpotential as well as a high energy conversion efficiency of 60.3 % and long-term durability.  相似文献   

20.
Metallic palladium (Pd) electrocatalysts for oxygen reduction and hydrogen peroxide (H2O2) oxidation/reduction are prepared via electroplating on a gold metal substrate from dilute (5 to 50 mM) aqueous K2PdCl4 solution. The best Pd catalyst layer possessing dendritic nanostructures is formed on the Au substrate surface from 50 mM Pd precursor solution (denoted as Pd‐50) without any additional salt, acid or Pd templating chemical species. The Pd‐50 consisted of nanostructured dendrites of polycrystalline Pd metal and micropores within the dendrites which provide high catalyst surface area and further facilitate reactant mass transport to the catalyst surface. The electrocatalytic activity of Pd‐50 proved to be better than that of a commercial Pt (Pt/C) in terms of lower overpotential for the onset and half‐wave potentials and a greater number of electrons (n) transferred. Furthermore, amperometric it curves of Pd‐50 for H2O2 electrochemical reaction show high sensitivities (822.2 and ?851.9 µA mM?1 cm?2) and low detection limits (1.1 and 7.91 µM) based on H2O2 oxidation H2O2 reduction, respectively, along with a fast response (<1 s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号