首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A combined experimental study and density functional theory calculations of fac‐[MnBr (CO)3L] complexes (L = 2‐(2′‐pyridyl)benzimidazole ligand, furnished with either morpholine (Lmorph) or phthalimido (Lphth) side‐chain) were performed using different spectral and analytical tools. The synthesized complexes released carbon monoxide upon the exposure to LED source light at 468 nm. Illumination of fac‐[MnBr (CO)3L] (10 μM) in the myoglobin solution (Mb) produced about 25 μM MbCO. The plateau of the CO release process is attained within 25 min. With the aid of time‐dependent density functional theory calculations, the observed lowest energy absorption transition at ~ 400 nm has a ground‐state composed of d (Mn)/π (pyridyl) and excited‐state of ligand π*‐orbitals forming MLCT/π‐π*. Natural population analyses of fac‐[MnBr (CO)3L] were carried out to get information about the strength of Mn–CO bonds, electronic arrangment and natural charge of manganese ion.  相似文献   

2.
The reaction of bromazepam (7‐bromo‐1,3‐dihydro‐5‐(2‐pyridyl)‐2H ‐1,4‐benzodiazepin‐2‐one, BZM) with Cr(III) ( 1 ), Fe(III) ( 2 ) and Ru(III) ( 3 ) salts gives complexes of the type [M(BZM)3]⋅3X (X = Cl or NO3). Structural characterization was extensively carried out using various analytical and spectral tools such as infrared, 1H NMR and UV–visible spectroscopies and magnetic, conductance, elemental and thermal analyses. BZM is a bidentate ligand and interacts with the metal ions via the pyridine and benzodiazepin‐2‐one nitrogen atoms. The magnetic and electronic properties of 2 and 3 are consistent with low‐spin octahedral complexes. The three BZM molecules are non‐isoenergetically coordinated to the metal ions and this is reflected in the values of the second‐order interaction energy. The antibacterial activity was studied using Staphylococcus aureus and Escherichia coli . Coordination of BZM to Cr(III) or Ru(III) ions leads to a marked increase in toxicity with respect to the inactive Fe(III) complex 2 .  相似文献   

3.
Three half‐sandwich iron(II) complexes, [Fe(η5‐Cp)(cis‐CO)2X] (X?=Cl?, Br?, I?), were synthesized and characterized. The kinetics of the CO‐releasing behaviour of these complexes upon illumination by visible irradiation in various media was investigated. Our results indicated that the CO release was significantly affected by the auxiliary ligands. Of the three light sources used (blue, green, and red), blue light exhibited the highest efficiency. In the photoinduced CO release, the solvents and exogenous nucleophiles in the media were involved, which allowed their CO‐releasing reaction to comply with pseudo first‐order model rather than the characteristic zero‐order model for a photochemical reaction. In aqueous media (D2O), an intermediate bearing the core of {FeII(cis‐CO)2} involving cleavage of cyclopentadiene was detected. Despite the non‐absorption of the red light, its illumination combined with nucleophilic substitution did cause considerable CO release. Assessment of the cytotoxicity of the three complexes indicated that they showed good biocompatibility.  相似文献   

4.
Human visual system is exposed to high levels of natural and artificial lights of different spectra and intensities along lifetime. Light‐emitting diodes (LEDs) are the basic lighting components in screens of PCs, phones and TV sets; hence it is so important to know the implications of LED radiations on the human visual system. The aim of this study was to investigate the effect of LEDs radiations on human retinal pigment epithelial cells (HRPEpiC). They were exposed to three light–darkness (12 h/12 h) cycles, using blue‐468 nm, green‐525 nm, red‐616 nm and white light. Cellular viability of HRPEpiC was evaluated by labeling all nuclei with DAPI; Production of reactive oxygen species (ROS) was determined by H2DCFDA staining; mitochondrial membrane potential was quantified by TMRM staining; DNA damage was determined by H2AX histone activation, and apoptosis was evaluated by caspases‐3,‐7 activation. It is shown that LED radiations decrease 75–99% cellular viability, and increase 66–89% cellular apoptosis. They also increase ROS production and DNA damage. Fluorescence intensity of apoptosis was 3.7% in nonirradiated cells and 88.8%, 86.1%, 83.9% and 65.5% in cells exposed to white, blue, green or red light, respectively. This study indicates three light–darkness (12 h/12 h) cycles of exposure to LED lighting affect in vitro HRPEpiC.  相似文献   

5.
The first visible‐light‐activated carbon‐monoxide‐releasing molecule (CO‐RM) to exhibit a potent effect against Escherichia coli is described. The easily prepared tryptophan‐derived manganese‐containing complex (TryptoCORM) released 1.4 moles of CO at 465 nm, and 2 moles at 400 nm. A comprehensive synthetic, mechanistic and microbiological study into the behaviour of TryptoCORM is reported. The complex is thermally stable (i.e., does not release CO in solution in the absence of light), shows low toxicity against mammalian cells and releases tryptophan on photoinduced degradation, all of which point to TryptoCORM being therapeutically viable.  相似文献   

6.
Structural, microstructural and bactericidal surface properties of TiO2‐coated glass substrates elaborated by reactive Radiofrequency sputtering are investigated. As pathogenic bacteria in biofilms are a major concern in food industries due to their growing resistance to cleaning and sanitizing procedures, the development of photoactive surfaces exhibiting bactericidal properties is acknowledged as an effective approach to tackle bacterial contaminations. Our principal aim concerns the study of the photoactive top‐layer thickness impact (from 80 nm to ~500 nm) on Listeria monocytogenes. Structural characterization of the TiO2 layers demonstrates that anatase and rutile phases are both present, depending on the film thickness. Photocatalytic activity of the samples has been evaluated through the degradation of aqueous methylene blue (MB) solutions under UVA light illumination for various time periods. The results show an efficiency rating increase according to TiO2 film thickness up to a threshold value close to 400 nm. Moreover, a significant decrease of the adherent bacteria number is observed after 20 min of UVA illumination. The quantitative study of the bactericidal activity associated with scanning electron microscopy observations of the postprocess bacteria damaged cells demonstrates the efficiency of the 240‐nm‐thick TiO2 coating sample. The results are correlated with the production of hydroxyl radicals during the process of photocatalysis.  相似文献   

7.
The structure of trans-[Pd(dtco-3-OH)2] (ClO4)2·2DMSO, in which dtco-3-OH is dithiacyclooctan-3-ol and DMSO is dimethyl sulfoxide, was determined by X-ray crystallographic analysis. The crystal data: space group pi, a = 0.7077(2) nm, b = 1.0788(1) nm, c = 1.1111(1) nm, α=67.710(8)°, β = 73. 59(2)°, γ = 85. 39(2)°,R1 = 0 . 0368 and Rw = 0.0998. The palladium (II) is coordinated by four sulfur atoms with a regular square planar configuration. The Pd-S distances are 0.2314(1) and 0.2317(1) nm, respectively. Both dtco-3-OH ligands are in the boat-chair configuration and two hydroxyl groups are on the opposite sites of the PdS4 coordination plane and are towards Pd(II). The Pd-O distance is 0. 285 nm, indicating a weak interaction between them. A typical hydrogen bond between the hydroxyl group of dtco-3-OH ligand and DMSO was observed in the crystal structure. An aqueous solution prepared with the crystals of the complex was used for the investigation of electrospray mass spectrometry ( ESMS ). Besid  相似文献   

8.
Four D‐π‐A‐type nonionic oxime sulfonate photoacid generators (PAGs) have been designed and synthesized for use in light‐emitting diode (LED) excitable cationic photoinitiators, in which N,N‐diphenylamino was used as electron donor with trifluoroacetophenone‐based oxime sulfonates (trifluoromethanoesulfonate and p‐toluenesulfonate) as electron acceptor and substituted fluorene and biphenyl groups as the π‐conjugated systems. PAG‐Ben‐Tol (with biphenyl and p‐toluenesulfonate) and PAG‐Flu‐Tol (with fluorene and p‐toluenesulfonate) showed high quantum yields of photoacid generation (0.33–0.50) and very good thermal stability (over 250 °C). The absorbance spectra of these PAGs were consistent with the emission spectra of commercially gained UV–visible LED light sources. The potential of these PAGs for cationic photoinitiators was tested in two cationic monomer systems. These PAGs needed low light intensity and low concentration for photopolymerization with high conversions of monomer, for example, over 80%, gained at 3.0 mW cm−2 from 365 to 470 nm LEDs. The photochemical mechanisms of these PAGs are comprehensively investigated and discussed in detail. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1146–1154  相似文献   

9.
Envenoming induced by Bothrops snakes is characterized by drastic local tissue damage involving hemorrhage, myonecrosis and proeminent inflammatory and hyperalgesic response. The most effective treatment is antivenom therapy, which is ineffective in neutralizing the local response. Herein, it was evaluated the effectiveness of light‐emitting diode (LED) at wavelengths of 635 and 945 nm in reducing inflammatory hyperalgesia induced by Bothrops moojeni venom (BmV) in mice, produced by an subplantar injection of BmV (1 μg). Mechanical hyperalgesia and allodynia were assessed by von Frey filaments at 1, 3, 6 and 24 h after venom injection. The site of BmV injection (1.2 cm2) was irradiated by LEDs at 30 min and 3 h after venom inoculation. Both 635 nm (110 mW, fluence of 3.76 J/cm2 and 41 s of irradiation time) and 945 nm (120 mW, fluence of 3.8 J/cm2 and 38 s of irradiation time) LED inhibited mechanical allodynia and hyperalgesia of mice alone or in combination with antivenom treatment, even when the symptoms were already present. The effect of phototherapy in reducing local pain induced by BmV should be considered as a novel therapeutic tool for the treatment of local symptoms induced after bothropic snake bites.  相似文献   

10.
Photoorientation and reorientation processes induced by illumination of the samples with oppositely directed polarized light and by the thermal treatment were studied for the films of triblock copolymer pAzo10‐b‐pPhM80‐b‐pAzo10 consisting of a nematic phenyl benzoate сentral sub‐block (PhM, DP = 80) with two terminal smectic azobenzene sub‐blocks (Azo, DP = 10). For amorphized films of triblock copolymer, illumination with polarized light (λ = 546 nm) is shown to be by orientation of only Azo‐containing groups, but upon following annealing of the film, PhM groups are adjusted to the orientation of Azo fragments. It was found, that the subsequent illumination of the block copolymer sample with oppositely directed polarized light changes the orientation of azobenzene groups, while the orientation of phenyl benzoate groups is remained unchanged. Thus, the cyclic illumination of the triblock copolymer samples by the linear polarized light and subsequent thermal treatment make it possible to control and fix orientation of azobenzene and phenyl benzoate groups located in different sub‐blocks in the desired and independent manner. The comparison of these results with the data on random p(Azo7ran‐PhM30) copolymer of the similar composition revealed, that in the random copolymer, both Azo and PhM mesogenic groups are involved in the orientational cooperative process regardless of films process treatment. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1602–1611  相似文献   

11.
PhotoCORMs (photo‐active CO‐releasing molecules) have emerged as a class of CO donors where the CO release process can be triggered upon illumination with light of appropriate wavelength. We have recently reported an Mn‐based photoCORM, namely [MnBr(pbt)(CO)3] [pbt is 2‐(pyridin‐2‐yl)‐1,3‐benzothiazole], where the CO release event can be tracked within cellular milieu by virtue of the emergence of strong blue fluorescence. In pursuit of developing more such trackable photoCORMs, we report herein the syntheses and structural characterization of two MnI–carbonyl complexes, namely fac‐tricarbonylchlorido[2‐(pyridin‐2‐yl)‐1,3‐benzothiazole‐κ2N ,N ′]manganese(I), [MnCl(C12H8N2S)(CO)3], (1), and fac‐tricarbonylchlorido[2‐(quinolin‐2‐yl)‐1,3‐benzothiazole‐κ2N ,N ′]manganese(I), [MnCl(C16H10N2S)(CO)3], (2). In both complexes, the MnI center resides in a distorted octahedral coordination environment. Weak intermolecular C—H…Cl contacts in complex (1) and Cl…S contacts in complex (2) consolidate their extended structures. These complexes also exhibit CO release upon exposure to low‐power broadband visible light. The apparent CO release rates for the two complexes have been measured to compare their CO donating capacity. The fluorogenic 2‐(pyridin‐2‐yl)‐1,3‐benzothiazole and 2‐(quinolin‐2‐yl)‐1,3‐benzothiazole ligands provide a convenient way to track the CO release event through the `turn‐ON' fluorescence which results upon de‐ligation of the ligands from their respective metal centers following CO photorelease.  相似文献   

12.
Pt and SnO2 were co‐functionalized on single‐walled carbon nanotubes (SWNTs) assembled on microelectrodes by electrochemical deposition where Pt nanoparticle's morphology, size, and density were tuned by controlling the applied potential and time. The systematic study to obtain the optimum condition for Pt‐decorated SnO2/SWNTs (Pt/SnO2/SWNTs) were performed and also correlate with its CO sensing performance. Illumination‐dependent sensing performance was examined using red, green and UV LED as light sources at room temperature. Under UV illumination, the sensitivity of Pt/SnO2/SWNTs was enhanced to 2.1 %/ppmV of CO with the lower detection limit of 0.05 ppmV.  相似文献   

13.
Selective substitutions of Fe2(μ‐odt)(CO)6 (odt = 1,3‐oxadithiolate, A ) and small bite‐angle diphosphines (Ph2P)2X [X = CH2 (dppm) or N (CH2CHMe2) (dppa)] have been well investigated in this study. With Me3NO·2H2O in MeCN at room temperature, the reaction of A and dppm produced the monodentate complex [Fe2(μ‐odt)(CO)5(κ1‐dppm)] ( 1 ), whereas the similar reaction with dppa afforded the chelate complex [Fe2(μ‐odt)(CO)4(κ2‐dppa)] ( 2 ). Using UV irradiation in toluene emitting at 365 nm, the treatment of A and dppm rarely resulted in the formation of the bridge complex [Fe2(μ‐odt)(CO)4(μ‐dppm)] ( 3 ), whereas the similar treatment with dppa formed the chelate complex 2 . Under thermolysis condition, refluxing solution of A with dppm or dppa gave the bridge complex 3 and [Fe2(μ‐odt)(CO)4(μ‐dppa)] ( 4 ), respectively, in which the former was formed in toluene (110 °C) but the latter was produced in xylene (138 °C). All the new complexes 1 – 4 obtained above were characterized by element analysis, FT‐IR, NMR (1H, 31P) spectroscopies, and particularly for 1 – 3 by X‐ray crystallography. Furthermore, the in situ protonations of 2 with a weak acid HOAc (acetic acid) and a strong acid TFA (trifluoroacetic acid) are explored by means of FT‐IR and NMR (1H, 31P) spectra. In addition, the electrochemical behaviors of 2 – 4 are studied and compared through cyclic voltammetry (CV) in the absence and presence of a strong acid (TFA) as a proton source, indicating that they all are active for electrocatalytic proton reduction to hydrogen (H2).  相似文献   

14.
We combine nanotechnology and chemical synthesis to create a novel multifunctional platinum drug delivery vehicle based on magnetic carbon nanotubes (multiwall carbon nanotubes/Fe3O4@poly(citric acid)/cis‐[(Pt(1,7‐phenanthroline)(DMSO)Cl2)]‐b‐poly(ethylene glycol) (MCNTs/FO@PC/Pt(II)‐b‐PEG)) for targeted cancer therapy. MCNTs/FO@PC/Pt(II)‐b‐PEG was conveniently prepared by conjugating cis‐[Pt(1,7‐phenanthroline)(DMSO)Cl2] complex to MCNTs/FO@PC‐b‐PEG via strong hydrogen‐bonding interactions. In comparison with free cisplatin and Pt(II) complex, MCNTs/FO@PC/Pt(II)‐b‐PEG shows higher solubility in aqueous solution and higher cytotoxicity towards human cervical cancer HeLa cells and human breast cancer MDA‐MB‐231 cells. In vitro release experiments revealed that the platinum drug‐loaded delivery system is relatively stable under physiological conditions (pH = 7.4 and 37 °C) but susceptible to acidic environments (pH = 5.6 and 37 °C) which would trigger the release of loaded drugs. Fluorescence microscopy studies revealed that this magnetic nanohybrid system possesses marked cell‐specific targeting in vitro in the presence of an external magnetic field. The results indicated that the prepared superparamagnetic MCNTs/FO@PC/Pt(II)‐b‐PEG nanohybrid system is a promising candidate for inhibiting the proliferation of cancer cells.  相似文献   

15.
The photochemistry of fac‐[Re(bpy)(CO)3Cl] ( 1 a ; bpy=2,2′‐bipyridine) initiated by irradiation using <330 nm light has been investigated. Isomerization proceeded in THF to give the corresponding mer‐isomer 1 b . However, in the presence of a small amount of MeCN, the main product was the CO‐ligand‐substituted complex (OC‐6‐24)‐[Re(bpy)(CO)2Cl(MeCN)] ( 2 c ; bpy=2,2′‐bipyridine). In MeCN, two isomers, 2 c and its (OC‐6‐34) form ( 2 a ), were produced. Only 2 c thermally isomerized to produce the (OC‐6‐44) form 2 b . A detailed investigation led to the conclusion that both 1 b and 2 c are produced by a dissociative mechanism, whereas 2 a forms by an associative mechanism. A comparison of the ultrafast transient UV‐visible absorption, emission, and IR spectra of 1 a acquired by excitation using higher‐energy light (e.g., 270 nm) and lower‐energy light (e.g., 400 nm) gave detailed information about the excited states, intermediates, and kinetics of the photochemical reactions and photophysical processes of 1 a . Irradiation of 1 a using the higher‐energy light resulted in the generation of the higher singlet excited state with τ≤25 fs, from which intersystem crossing proceeded to give the higher triplet state (3HES( 1 )). In THF, 3HES( 1 ) was competitively converted to both the triplet ligand field (3LF) and metal‐to‐ligand charge transfer (3M LCT) with lifetimes of 200 fs, in which the former is a reactive state that converts to [Re(bpy)(CO)2Cl(thf)]+ ( 1 c ) within 10 ps by means of a dissociative mechanism. Re‐coordination of CO to 1 c gives both 1 a and 1 b . In MeCN, irradiation of 1 a by using high‐energy light gives the coordinatively unsaturated complex, which rapidly converted to 2 c . A seven‐coordinate complex is also produced within several hundred femtoseconds, which is converted to 2 a within several hundred picoseconds.  相似文献   

16.
The chemical oxidative polymerization (OP) of 8-hydroxyquinoline (HQ) in an organic medium leaded to the formation of the C-2 and C-4 linking poly (8-hydroxyquinoline) (PHQ). The structure of PHQ was confirmed by UV-Vis, FT-IR, and 1H-NMR. The characterization of polymer was performed by TG-DTA, differential scanning calorimetry, dynamic mechanical analysis, dynamic light scattering, size exclusion chromatography, X-ray diffraction, cyclic voltammetry, atomic force microscope, photoluminescence and solubility tests. The fluorescence spectrum of PHQ exhibited an emission peak at approximately 525 nm in DMSO. Accordingly, it was found PHQ emitted green light whereas HQ emitted yellow light in DMSO solvent. Optical band gaps (Eg) of PHQ was calculated to be 3.31 eV. The electrical conductivities of iodine doped-PHQ and undoped-PHQ were measured with four-point probe technique. Magnetic particles was prepared by chemical precipitation of mixed Fe(II) and Fe(III) salts and modified with HQ by using an in situ chemical oxidation polymerization method in organic medium.  相似文献   

17.
Sparing sensitive healthy tissue from chemotherapy exposure is a critical challenge in the treatment of cancer. The work described here demonstrates the localized in vivo photoactivation of a new chemotherapy prodrug of doxorubicin (DOX). The DOX prodrug (DOX‐PCB) was 200 times less toxic than DOX and was designed to release pure DOX when exposed to 365 nm light. This wavelength was chosen because it had good tissue penetration through a 1 cm diameter tumor, but had very low skin penetration, due to melanin absorption, preventing uncontrolled activation from outside sources. The light was delivered specifically to the tumor tissue using a specialized fiber‐optic LED system. Pharmacokinetic studies showed that DOX‐PCB had an α circulation half‐life of 10 min which was comparable to that of DOX at 20 min. DOX‐PCB demonstrated resistance to metabolic cleavage ensuring that exposure to 365 nm light was the main mode of in vivo activation. Tissue extractions from tumors exposed to 365 nm light in vivo showed the presence of DOX‐PCB as well as activated DOX. The exposed tumors had six times more DOX concentration than nearby unexposed control tumors. This in vivo proof of concept demonstrates the first preferential activation of a photocleavable prodrug in deep tumor tissue.  相似文献   

18.
A photoactivatable ruthenium(II) carbonyl complex mer,cis-[Ru(II)Cl(BisQ)(CO)2]PF6 2 was prepared using a tridentate bisquinoline ligand (BisQ=(2,6-diquinolin-2-yl)pyridin). Compound 2 was thoroughly characterized by standard analytical methods and single crystal X-ray diffraction. The crystal structure of the complex cation reveals a distorted octahedral geometry. The decarbonylation upon exposure to 350 and 420 nm light was monitored by UV/VIS absorbance and Fourier transform infrared spectroscopies in acetonitrile and 1 % (v/v) DMSO in water, respectively. The kinetic of the photodecarbonylation has been elucidated by multivariate curve resolution alternating least-squares analysis. The stepwise decarbonylation follows a serial mechanism. The first decarbonylation occurs very quickly whereas the second decarbonylation step proceeds more slowly. Moreover, the second rate constant is lower in 1 % (v/v) DMSO in water than in acetonitrile. In comparison to 350 nm irradiation, exposure to 420 nm light in acetonitrile results in a lower second rate constant.  相似文献   

19.
Ru(CO)3 [Ph2PN (i‐Bu) PPh2‐P, P] was conveniently obtained by the reaction of Ru(DMSO)4Cl2 with Ph2PN(i‐Bu)‐PPb2 and CO in the presence of Zn powder under mild conditions. The crystal and molecular structure was determined by X‐ray diffraction. This compound possesses a distorted trigonal bipyramidal configuration.  相似文献   

20.
The current commercial white light-emitting diodes (LEDs) are generally based on the combination of blue LED chips and Y3Al5O12:Ce3+ yellow phosphors. However, because of the lack of red component, such white LED devices exhibit cool white-light emissions with low color rendering index (Ra < 75, R9 < 0). Therefore, it is urgent to discover new blue-light-excitable yellow-emitting phosphors with enhanced red emissions for fabricating high color-quality white LEDs. In the present work, we demonstrate a novel broadband yellow-emitting CaGd2HfScAl3O12:Ce3+ garnet phosphor for blue-light-excited white LEDs with improved color rendering index. The as-prepared CaGd2HfScAl3O12:Ce3+ garnet phosphor possesses a cubic structure with Ia3¯d space group, and the unit cell parameters of the representative CaGd2HfScAl3O12:2%Ce3+ phosphor are a = b = c = 12.450 Å, α = β = γ = 90°, and V = 1,929.59(4) Å3. Impressively, we find that the CaGd2HfScAl3O12:Ce3+ garnet phosphor shows an intense absorption band in the 300–500 nm wavelength range with a maximum at 452 nm owing to the 4f→5d transition of Ce3+ ions. On 452 nm excitation, the optimal CaGd2HfScAl3O12:2%Ce3+ sample exhibits a broad asymmetric yellow emission band in the wavelength range of 470–750 nm with peak at 564 nm and full width at half maximum of 151 nm. The Commission Internationale de l’Eclairage chromaticity coordinates and internal quantum efficiency of the CaGd2HfScAl3O12:2%Ce3+ sample are (0.4485, 0.5157) and 30.4%, respectively. Finally, a white LED device is fabricated by combing a 450 nm blue LED chip with commercial Y3Al5O12:Ce3+ yellow-emitting phosphor, which generates white light with low color rendering index (CRI; Ra = 74.7, R9 = ?12.7) and high correlated color temperature (CCT = 6,554 K) under the 60 mA driving current. In sharp contrast, another white LED device, which is made by coating our as-prepared CaGd2HfScAl3O12:2%Ce3+ yellow-emitting phosphors onto the surface of a 450 nm blue LED chip, produces white-light emission with high CRI value (Ra = 84.5, R9 = 26.3) and relatively low CCT of 5,649 K. This work reveals that the newly discovered broadband yellow-emitting CaGd2HfScAl3O12:Ce3+ phosphors can serve as a potential color converter in high-color-quality phosphor-converted white LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号