首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Reported here is a novel dynamic biointerface based on reversible catechol‐boronate chemistry. Biomimetically designed peptides with a catechol‐containing sequence and a cell‐binding sequence at each end were initially obtained. The mussel‐inspired peptides were then reversibly bound to a phenylboronic acid (PBA) containing polymer‐grafted substrate through sugar‐responsive catechol‐boronate interactions. The resultant biointerface is thus capable of dynamic presentation of the bioactivity (i.e. the cell‐binding sequence) by virtue of changing sugar concentrations in the system (similar to human glycemic volatility). In addition, the sugar‐responsive biointerface enables not only dynamic modulation of stem cell adhesion behaviors but also selective isolation of tumor cells. Considering the highly biomimetic nature and biological stimuli‐responsiveness, this mussel‐inspired dynamic biointerface holds great promise in both fundamental cell biology research and advanced medical applications.  相似文献   

2.
We have developed a straightforward strategy to multimerize an apoptogenic peptide that mimics the natural tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL) by using adamantane‐based dendrons as multivalent scaffolds. The selective binding affinity of the ligands to TRAIL receptor 2 (TR2) was studied by surface plasmon resonance, thus demonstrating that the trimeric and hexameric forms of the peptide exert an increased affinity of about 1500‐ and 20 000‐fold, respectively, relative to the monomer. Moreover, only the trimeric and hexameric ligands were able to induce cell death in TR2 expressing cells (BJAB), thus confirming that a multivalent form of the peptide is necessary to trigger a substantial TR2‐dependent apoptotic response in vitro. These results provide interesting insight into the multivalency effect on biological ligand/receptor interactions for future therapeutic applications.  相似文献   

3.
Higher‐order assemblies of proteins, with a structural and dynamic continuum, is an important concept in biology, but these insights have yet to be applied in designing biomaterials. Dynamic assemblies of supramolecular phosphoglycopeptides (sPGPs) transform a 2D cell sheet into 3D cell spheroids. A ligand–receptor interaction between a glycopeptide and a phosphopeptide produces sPGPs that form nanoparticles, which transform into nanofibrils upon partial enzymatic dephosphorylation. The assemblies form dynamically and hierarchically in situ on the cell surface, and interact with the extracellular matrix molecules and effectively abolish contact inhibition of locomotion (CIL) of the cells. Integrating molecular recognition, catalysis, and assembly, these active assemblies act as a dynamic continuum to disrupt CIL, thus illustrating a new kind of biomaterial for regulating cell behavior.  相似文献   

4.
Inspired by the knowledge that most antibodies recognize a conformational epitope because of the epitope’s specific three‐dimensional shape rather than its linear structure, we combined scaffold‐based peptide design and surface molecular imprinting to fabricate a novel nanocarrier harboring stable binding sites that captures a membrane protein. In this study, a disulfide‐linked α‐helix‐containing peptide, apamin, was used to mimic the extracellular, structured N‐terminal part of the protein p32 and then serve as an imprinting template for generating a sub‐40 nm‐sized polymeric nanoparticle that potently binds to the target protein, recognizes p32‐positive tumor cells, and successfully mediates targeted photodynamic therapy in vivo. This could provide a promising alternative for currently used peptide‐modified nanocarriers and may have a broad impact on the development of polymeric nanoparticle‐based therapies for a wide range of human diseases.  相似文献   

5.
Interactions between proteins frequently involve recognition sequences based on multivalent binding events. Dimeric 14‐3‐3 adapter proteins are a prominent example and typically bind partner proteins in a phosphorylation‐dependent mono‐ or bivalent manner. Herein we describe the development of a cucurbit[8]uril (Q8)‐based supramolecular system, which in conjunction with the 14‐3‐3 protein dimer acts as a binary and bivalent protein assembly platform. We fused the phenylalanine–glycine–glycine (FGG) tripeptide motif to the N‐terminus of the 14‐3‐3‐binding epitope of the estrogen receptor α (ERα) for selective binding to Q8. Q8‐induced dimerization of the ERα epitope augmented its affinity towards 14‐3‐3 through a binary bivalent binding mode. The crystal structure of the Q8‐induced ternary complex revealed molecular insight into the multiple supramolecular interactions between the protein, the peptide, and Q8.  相似文献   

6.
7.
Immobilizing proteins on a solid surface in a site‐specific orientation and maintaining their bioactivity are crucial to the construction of high‐performance immunoassays. In this study, an affinity ligand for polystyrene (PS) surface screened from a phage display peptide library, named Lig1, was genetically fused to the N/C‐terminus of chimeric antigen HCV that could be recognized by specific antibodies against hepatitis C virus (HCV). Immunoassay characteristics of lig1‐fused HCVs immobilized on PS surface were compared to that of original HCV in both direct and indirect enzyme‐linked immunosorbent assay (ELISA). The results indicated that HCV‐Lig1 (Lig1 fused to HCV C‐terminus) was preferentially adsorbed on PS surface in a site‐oriented manner and would expose specific antibody‐binding sites well, which resulted in a substantial enhancement of detection sensitivity. AFM images showed that, compared to the original one, HCV‐Lig1 was arranged on PS surface in an ordered state and its conformational and steric distortions induced during the interfacial binding process were much slighter. As long as the specific epitope of a coating antigen is not located on both its N and C‐terminus, the ligand fusion approach could be an ideal strategy for site‐oriented protein immobilization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Exosomes are small (30–100 nm) membrane vesicles that serve as regulatory agents for intercellular communication in cancers. Currently, exosomes are detected by immuno‐based assays with appropriate pretreatments like ultracentrifugation and are time consuming (>12 h). We present a novel pretreatment‐free fluorescence‐based sensing platform for intact exosomes, wherein exchangeable antibodies and fluorescent reporter molecules were aligned inside exosome‐binding cavities. Such antibody‐containing fluorescent reporter‐grafted nanocavities were prepared on a substrate by well‐designed molecular imprinting and post‐imprinting modifications to introduce antibodies and fluorescent reporter molecules only inside the binding nanocavities, enabling sufficiently high sensitivity to detect intact exosomes without pretreatment. The effectiveness of the system was demonstrated by using it to discriminate between normal exosomes and those originating from prostate cancer and analyze exosomes in tear drops.  相似文献   

9.
The enantiomeric state of a supramolecular copper catalyst can be switched in situ in ca. five seconds. The dynamic property of the catalyst is provided by the non‐covalent nature of the helical assemblies supporting the copper centers. These assemblies are formed by mixing an achiral benzene‐1,3,5‐tricarboxamide (BTA) phosphine ligand (for copper coordination) and both enantiomers of a chiral phosphine‐free BTA co‐monomer (for chirality amplification). The enantioselectivity of the hydrosilylation reaction is fixed by the BTA enantiomer in excess, which can be altered by simple BTA addition. As a result of the complete and fast stereochemical switch, any combination of the enantiomers was obtained during the conversion of a mixture of two substrates.  相似文献   

10.
Functional differences between superhydrophobic surfaces, such as lotus leaf and rose petals, are due to the subtle architectural features created by nature. Mimicry of these surfaces with synthetic molecules continues to be fascinating as well as challenging. Herein, we demonstrate how inherently hydrophilic alumina surface can be modified to give two distinct superhydrophobic behaviors. Functionalization of alumina with an organic ligand resulted in a rose‐petal‐like surface (water pinning) with a contact angle of 145° and a high contact angle hysteresis (±69°). Subsequent interaction of the ligand with Zn2+ resulted in a lotus‐leaf‐like surface with water rolling behavior owing to high contact angle (165°) and low‐contact‐angle‐hysteresis (±2°). In both cases, coating of an aromatic bis‐aldehyde with alkoxy chain substituents was necessary to emulate the nanowaxy cuticular feature of natural superhydrophobic materials.  相似文献   

11.
The oxygen evolution reaction (OER) has been explored extensively for reliable hydrogen supply to boost the energy conversion efficiency. The superior OER performance of newly developed non‐noble metal electrocatalysts has concealed the identification of the real active species of the catalysts. Now, the critical active phase in nickel‐based materials (represented by NiNPS) was directly identified by observing the dynamic surface reconstruction during the harsh OER process via combining in situ Raman tracking and ex situ microscopy and spectroscopy analyses. The irreversible phase transformation from NiNPS to α‐Ni(OH)2 and reversible phase transition between α‐Ni(OH)2 and γ‐NiOOH prior to OER demonstrate γ‐NiOOH as the key active species for OER. The hybrid catalyst exhibits 48‐fold enhanced catalytic current at 300 mV and remarkably reduced Tafel slope to 46 mV dec?1, indicating the greatly accelerated catalytic kinetics after surface evolution.  相似文献   

12.
Selectively targeting the membrane‐perturbing potential of peptides towards a distinct cellular phenotype allows one to target distinct populations of cells. We report the de novo design of a new class of peptide whose ability to perturb cellular membranes is coupled to an enzyme‐mediated shift in the folding potential of the peptide into its bioactive conformation. Cells rich in negatively charged surface components that also highly express alkaline phosphatase, for example many cancers, are susceptible to the action of the peptide. The unfolded, inactive peptide is dephosphorylated, shifting its conformational bias towards cell‐surface‐induced folding to form a facially amphiphilic membrane‐active conformer. The fate of the peptide can be further tuned by peptide concentration to affect either lytic or cell‐penetrating properties, which are useful for selective drug delivery. This is a new design strategy to afford peptides that are selective in their membrane‐perturbing activity.  相似文献   

13.
The unambiguous characterization of the coordination chemistry of nanocrystal surfaces produced by wet‐chemical synthesis presently remains highly challenging. Here, zinc oxide nanocrystals (ZnO NCs) coated by monoanionic diphenyl phosphate (DPP) ligands were derived by a sol‐gel process and a one‐pot self‐supporting organometallic (OSSOM) procedure. Atomic‐scale characterization through dynamic nuclear polarization (DNP‐)enhanced solid‐state NMR (ssNMR) spectroscopy has notably enabled resolving their vastly different surface‐ligand interfaces. For the OSSOM‐derived NCs, DPP moieties form stable and strongly‐anchored μ2‐ and μ3‐bridging‐ligand pairs that are resistant to competitive ligand exchange. The sol‐gel‐derived NCs contain a wide variety of coordination modes of DPP ligands and a ligand exchange process takes place between DPP and glycerol molecules. This highlights the power of DNP‐enhanced ssNMR for detailed NC surface analysis and of the OSSOM approach for the preparation of ZnO NCs.  相似文献   

14.
The fast and reversible switching of plasmonic color holds great promise for many applications, while its realization has been mainly limited to solution phases, achieving solid‐state plasmonic color‐switching has remained a significant challenge owing to the lack of strategies in dynamically controlling the nanoparticle separation and their plasmonic coupling. Herein, we report a novel strategy to fabricate plasmonic color‐switchable silver nanoparticle (AgNP) films. Using poly(acrylic acid) (PAA) as the capping ligand and sodium borate as the salt, the borate hydrolyzes rapidly in response to moisture and produces OH? ions, which subsequently deprotonate the PAA on AgNPs, change the surface charge, and enable reversible tuning of the plasmonic coupling among adjacent AgNPs to exhibit plasmonic color‐switching. Such plasmonic films can be printed as high‐resolution invisible patterns, which can be readily revealed with high contrast by exposure to trace amounts of water vapor.  相似文献   

15.
Peptide‐stabilized platinum nanoparticles (PtNPs) were developed that have significantly greater toxicity against hepatic cancer cells (HepG2) than against other cancer cells and non‐cancerous liver cells. The peptide H‐Lys‐Pro‐Gly‐d Lys‐NH2 was identified by a combinatorial screening and further optimized to enable the formation of water‐soluble, monodisperse PtNPs with average diameters of 2.5 nm that are stable for years. In comparison to cisplatin, the peptide‐coated PtNPs are not only more toxic against hepatic cancer cells but have a significantly higher tumor cell selectivity. Cell viability and uptake studies revealed that high cellular uptake and an oxidative environment are key for the selective cytotoxicity of the peptide‐coated PtNPs.  相似文献   

16.
A new microtiter‐plate‐based method for the rapid generation and evaluation of focused compound libraries was developed and applied to screening ligand analogues for the E. coli Shiga‐like toxin Stx2a. The method is general, it mitigates the masking of intrinsic affinity gains by multivalency and enables the discovery of potential hits when starting from ligands that exhibit extremely low affinity with proteins that depend on multivalency for their function.  相似文献   

17.
We report here a “nonspectator” behavior for an unsupported L ‐function σ3‐P ligand (i.e. P{N[o‐NMe‐C6H4]2}, 1a ) in complex with the cyclopentadienyliron dicarbonyl cation (Fp+). Treatment of 1a ?Fp+ with [(Me2N)3S][Me3SiF2] results in fluoride addition to the P‐center, giving the isolable crystalline fluorometallophosphorane 1aF ?Fp that allows a crystallographic assessment of the variance in the Fe?P bond as a function of P‐coordination number. The nonspectator reactivity of 1a ?Fp+ is rationalized on the basis of electronic structure arguments and by comparison to trigonal analogue (Me2N)3P?Fp+ (i.e. 1b ?Fp+), which is inert to fluoride addition. These observations establish a nonspectator L/X‐switching in (σ3‐P)–M complexes by reversible access to higher‐coordinate phosphorus ligand fragments.  相似文献   

18.
Molecular imprinting of cis‐diol functionalized agents via boronate affinity interaction has been usually performed using nanoparticles as a support which cannot be utilized as a stationary phase in continuous microcolumn applications. In this study, monodisperse‐porous, spherical silica particles in the micron‐size range, with bimodal pore diameter distribution were selected as a new support for the synthesis of a molecularly imprinted boronate affinity sorbent, using a cis‐diol functionalized agent as the template. A specific surface area of 158 m2/g was achieved with the imprinted sorbent by using monodisperse‐porous silica microspheres containing both mesoporous and macroporous compartments as the support. High porosity originating from the macroporous compartment and sufficiently high particle size provided good column permeability to the imprinted sorbent in microcolumn applications. The mesoporous compartment provided a large surface area for the parking of imprinted molecules while the macroporous compartment facilitated the intraparticular diffusion of imprinted target within the microsphere interior. A microfluidic boronate affinity system was first constructed by using molecularly imprinted polymeric shell coated monodisperse‐porous silica microspheres as a stationary phase. The synthetic route for the imprinting process, the reversible adsorption/ desorption behavior of selected target and the selectivity of imprinted sorbent in both batch and microfluidic boronate affinity chromatography systems are reported.  相似文献   

19.
The effect of preorganized versus undefined charge display on the cellular uptake of cationic cell‐penetrating peptides (CPPs) was investigated by comparing conformationally well‐defined guanidinylated oligoprolines with flexible oligoarginines. Flow cytometry and confocal microscopy studies with different cancer cell lines (HeLa, MCF‐7, and HT‐29) showed that preorganization of cationic charges in lateral distances of ≈9 Å enhanced the cellular uptake of CPPs. Binding affinity measurements revealed tighter binding of analogues of cell‐surface glycans to the guanidinylated octaproline with localized charges compared to flexible octaarginine, a finding that was further correlated to the cellular uptake by studies with CHO cells deficient in glycans on the outer plasma membrane.  相似文献   

20.
Protein corona formation was regulated on the surface in vivo by molecular imprinting to enable polymeric nanogels to acquire stealth upon intravenous administration. Albumin, the most abundant protein in blood, was selected as a distinct protein component of protein corona for preparing molecularly imprinted nanogels (MIP‐NGs) to form an albumin‐rich protein corona. Intravital fluorescence resonance energy transfer imaging of rhodamine‐labeled albumin and fluorescein‐conjugated MIP‐NGs showed that albumin was captured by MIP‐NGs immediately after injection, forming an albumin‐rich protein corona. MIP‐NGs circulated in the blood longer than those of non‐albumin‐imprinted nanogels, with almost no retention in liver tissue. MIP‐NGs also passively accumulated in tumor tissue. These data suggest that this strategy, based on regulation of the protein corona in vivo, may significantly influence the development of drug nanocarriers for cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号