首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A highly sensitive, rapid assay method has been developed and validated for the analysis of hyperoside in beagle dog plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves extraction of hyperoside and ginsenoside Re (IS) from beagle dog plasma. Chromatographic separation was carried out on an Agilent Zorbax XDB‐C18 (100 × 2.1 mm, 1.8 µm) column by isocratic elution with acetonitrile and water (50:50, v/v) at a flow rate of 0.25 mL/min with a total run time of 2.0 min. The MS/MS ion transitions monitored were 464.4 → 463.4 for hyperoside and 947.12 → 969.60 for IS. Linear responses were obtained for hyperoside ranging from 10 to 5000 ng/mL. The intra‐and inter‐day precisions (RSDs) were <5.38 and 3.39% and the extraction recovery ranged from 94.39 to 100.78% with an RSD <3.82%. Stability studies showed that hyperoside was stable in preparation and analytical process. The results indicated that the validated method was successfully used to determine the concentration–time profiles of hyperoside. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A simple, sensitive and specific liquid chromatography tandem mass spectrometry (LC‐ESI‐MS/MS) method was developed for the quantification of desvenlafaxine in human plasma using desvenlafaxine d6 as an internal standard (IS). Chromatographic separation was performed using a Thermo‐BDS hypersil C8 column (50 × 4.6 mm, 3 µm) with an isocratic mobile phase composed of 5 mM ammonium acetate buffer: methanol (20:80, v/v), at a flow rate of 0.80 mL/min. Desvenlafaxine and desvenlafaxine d6 were detected with proton adducts at m/z 264.2/58.1 and 270.2/ 64.1 in multiple reaction monitoring positive mode, respectively. Liquid–liquid extraction was used to extract the drug and the IS. The method was linear over the concentration range 1.001–400.352 ng/mL with a correlation coefficient of ≥0.9994. This method demonstrated intra and inter‐day precision within 0.7–5.5 and 1.9–6.8%, and accuracy within 95.3–107.4 and 93.4–99.5%. Desvenlafaxine was found to be stable throughout the freeze–thaw cycles, bench‐top and long‐term matrix stability studies. The developed and validated method can be successfully applied for the bioequivalence/pharmacokinetic studies of desvenlafaxine in pharmaceutical dosage forms. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, a new LC‐ESI‐MS/MS‐based method was validated for the quantitation of hemslecin A in rhesus monkey plasma using otophylloside A as internal standard (IS). Hemslecin A and the IS were extracted from rhesus monkey plasma using liquid–liquid extraction as the sample clean‐up procedure, and were subjected to chromatography on a Phenomenex Luna CN column (150 × 2.0 mm, 3.0 µm) with the mobile phase consisting of methanol and 0.02 mol/mL ammonium acetate (55:45, v/v) at a flow rate of 0.2 mL/min. Detection was performed on an Agilent G6410B tandem mass spectrometer by positive ion electrospray ionization in multiple reaction monitoring mode, monitoring the transitions m/z 580.5 [M + NH4]+ → 503.4 and m/z 518.2 [M + NH4]+ → 345.0 for hemslecin A and IS, respectively. The assay was linear over the concentration range of 0.5–200 ng/mL and was successfully applied to a pharmacokinetic study in rhesus monkeys. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
In the current study, a simple, sensitive and rapid analytical method for the determination of dexamethasone was developed and applied to a pharmacokinetic study in nude mice. Using testosterone as an internal standard, a liquid chromatography–tandem mass spectrometry (LC‐MS/MS) approach after one‐step precipitation with acetonitrile was validated and used to determine the concentrations of dexamethasone in nude mice plasma. The method utilized a simple isocratic reverse phase separation over a Dionex C18 column with a mobile phase composed of acetonitrile–water (40:60, v/v). The analyte was detected by a triple quadrupole tandem mass spectrometer via electrospray and multiple reaction monitoring was employed to select both dexamethasone at m/z 393.0/147.1 and testosterone at m/z 289.5/97.3 in the positive ion mode. The calibration curves were linear (r >0.99) ranging from 2.5 to 500 ng/mL with a lower limit of quantitation of 2.5 ng/mL. The relative standard deviation ranged from 1.69 to 9.22% while the relative error ranged from ?1.92 to ?8.46%. This method was successfully applied to a preclinical pharmacokinetic study of dexamethasone and its pharmacokinetics was characterized by a two‐compartment model with first‐order absorption in female nude mice. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
A rapid and sensitive LC‐electrospray ionization‐MS method was developed for determining vinorelbine in rat plasma. A 100 µL plasma sample was treated using a protein precipitation procedure and was chromatographed within 4 min using an Inertsil ODS‐3 C18 (2.1 × 50 mm, 5 µm) column. The selected ion monitoring ions [M + H]+ were m/z 779 and m/z 811 for vinorelbine and vinblastine (internal standard), respectively. The method validation showed that the calibration curve for vinorelbine was linear over a concentration range of 1–1000 ng/mL with lower limit of quantification at 1 ng/mL. The method has been successfully applied to pharmacokinetics in rat plasma. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
LC‐ ESI‐ MS/MS simultaneous bioanalytical method was developed to determine acitretin and its metabolite isoacitretin in human plasma using acitretin‐d3 used as the internal standard for both analytes. The compounds were extracted using protein precipitation coupled with liquid–liquid extraction with flash freezing technique. Negative mass transitions (m/z) of acitretin, isoacitretin and acitretin‐d3 were detected in multiple reactions monitoring (MRM) mode at 325.4 → 266.3, 325.2 → 266.1 and 328.3 → 266.3, respectively, with a turbo ion spray interface. The chromatographic separation was achieved on an Ascentis‐RP amide column (4.6 × 150 mm, 5 µm) with mobile phase delivered in isocratic mode. The method was validated over a concentration range of 1.025–753.217 ng/mL for acitretin and 0.394–289.234 ng/mL for isoacitretin with a limit of quantification of 1.025 and 0.394 ng/mL. The intra‐day and inter‐day precisions were below 8.1% for acitretin and below 13.8% for isoacitretin, while accuracy was within ±7.0 and ±10.6% respectively. For the first time, the best possible conditions for plasma stability of acitretin and isoacitretin are presented and discussed with application to clinical samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A sensitive, specific and simple LC‐MS/MS method was developed for the identification and quantification of bivalirudin in human plasma using diazepam as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under multiple‐reaction monitoring mode using electrospray ionization. The sample preparation consisted of an easy protein precipitation sample pretreatment with methanol. Chromatographic separation was achieved on a Zorbax Eclipse plus C18 100 × 2.1 mm column with a mobile phase of water–methanol–0.1% formic acid. The analytes were detected with a triple quadrupole Quantum Access with positive ionization. Ions monitored in the multiple‐reaction monitoring mode were m/z 1091 → 650 for bivalirudin (at 2.70 min) and m/z 285 → 193 for diazepam (at 3.85 min). The developed method was validated in human plasma with a lower limit of quantitation of 20 µg/L for bivalirudin. A linear response function was established for the range of concentrations 20–10,000 µg/L (r > 0.998) for bivalirudin. The intra‐ and inter‐day precision values for bivalirudin met the acceptance criteria as per US Food and Drug Administration guidelines. Bivalirudin was stable in the battery of stability studies, viz. bench‐top, freeze–thaw cycles and long‐term stability. The developed assay method was applied to an intravenous administration study in humans. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Bullatine A is a diterpenoid alkaloid of Xue‐Shang‐Yi‐Zhi‐Hao (Aconitum brachypodum), which is widely used in traditional Chinese medicine for the treatment of rheumatism and pain. The plasma levels of bullatine A were measured by a rapid and sensitive LC‐MS/MS method. Samples were prepared using acetonitrile precipitation and the separation of bullatine A was achieved on a Capcell Pak MG‐C18 column by isocratic elution using acetonitrile (phase A) and 0.1% formic acid (phase B, pH 4.0; A:B, 30:70, v/v) as the mobile phase at a flow rate of 0.5 mL/min. Detection was performed on a triple‐quadrupole tandem mass spectrometer by multiple‐reaction monitoring of the transitions at m/z 344.2 → 105.2 for bullatine A and m/z 256.2 → 167.1 for the internal standard. The linearity was found to be within the concentration range of 1.32–440 ng/mL with a lower limit of quantification of 1.32 ng/mL. Only 1.3 min was needed for an each analytical run. This method was successfully applied in the determination of the active component bullatine A in rat plasma after intramuscular administration of A. brachypodum injection. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
A sensitive and rapid LC‐MS/MS method has been developed and validated for quantifying swertianolin in rat plasma using rutin as an internal standard (IS). Following liquid–liquid extraction with ethyl acetate, chromatographic separation for swertianolin was achieved on a C18 column with a gradient elution using 0.1% formic acid as mobile phase A and acetonitrile as mobile phase B at a flow rate of 0.3 mL/min. The detection was performed on a tandem mass spectrometer using multiple reaction monitoring via an electrospray ionization source and operating in the negative ionization mode. The optimized mass transition ion pairs (m/z) for quantitation were 435.1/272.0 for swertianolin and 609.2/300.1 for IS. The lower limit of quantitation was 0.5 ng/mL within a linear range of 0.5–500 ng/mL. Intra‐day and inter‐day precision was less than 6.8%. The accuracy was in the range of ?13.9 to 12.0%. The mean recovery of swertianolin was >66.7%. The proposed method was successfully applied in evaluating the pharmacokinetics of swertianolin after an oral dose of 50 mg/kg Swertia mussotii extract in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
We developed and validated a simple, sensitive, selective and reliable LC–ESI‐MS/MS method for direct quantitation of dropropizine enantiomers namely levodropropizine (LDP) and dextrodropropizine (DDP) in rat plasma without the need for derivatization as per regulatory guidelines. Dropropizine enantiomers and carbamazepine (internal standard) were extracted from 50 μL rat plasma using ethyl acetate. LDP and DDP resolved with good baseline separation (Rs = 4.45) on a Chiralpak IG‐3 column. The mobile phase consisted of methanol with 0.05% diethylamine pumped at a flow rate of 0.5 mL/min. Detection and quantitation were done in multiple reaction monitoring mode following the transitions m/z 237 → 160 and 237 → 194 for dropropizine enantiomers and the internal standard, respectively, in the positive ionization mode. The proposed method provided accurate and reproducible results over the linearity range of 3.23–2022 ng/mL for each enantiomer. The intra‐ and inter‐day precisions were in the ranges of 3.38–13.6 and 5.11–13.8 for LDP and 4.19–11.8 and 8.89–10.1 for DDP. Both LDP and DDP were found to be stable under different stability conditions. The method was successfully used in a stereoselective pharmacokinetic study of dropropizine enantiomers in rats following oral administration of racemate dropropizine at 100 mg/kg. The pharmacokinetic results indicate that the disposition of dropropizine enantiomers is not stereoselective and chiral inversion does not occur in rats.  相似文献   

11.
A simple, specific and sensitive LC‐MS/MS method was developed and validated for the determination of mesalazine in beagle dog plasma. The plasma samples were prepared by protein precipitation, then the separation of the analyte was achieved on a Waters Spherisorb C6 column (150 × 4.6 mm, 5 µm) with a mobile phase consisting of 0.2% formic acid in water–methanol (20:80, v/v). The flow rate was set at 1.0 mL/min with a split ratio of 3:2. Mass spectrometric detection was achieved by a triple‐quadrupole mass spectrometer equipped with an electrospray source interface in positive ionization mode. Quantitation was performed using selected reaction monitoring of precursor–product ion transitions at m/z 154 → m/z 108 for mesalazine and m/z 285 → m/z 193 for diazepam (internal standard). The linear calibration curve of mesalazine was obtained over the concentration range 50–30,000 ng/mL. The matrix effect of mesalazine was within ±9.8%. The intra‐ and inter‐day precisions were <7.9% and the accuracy (relative error) was within ±3.5%. The validated method was successfully applied to investigate the pharmacokinetics of mesalazine in healthy beagle dogs after rectal administration of mesalazine suppository. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A highly sensitive and specific LC‐ESI‐MS/MS method has been developed and validated for simultaneous quantification of felodipine (FDP) and metoprolol (MPL) in rat plasma (50 μL) using phenacetin as an internal standard (IS) as per the FDA guidelines. Liquid–liquid extraction method was used to extract the analytes and IS from rat plasma. The chromatographic resolution of FDP, MPL and IS was achieved with a mobile phase consisting of 0.2% formic acid in water–acetonitrile (25:75, v/v) with a time program flow gradient on a C18 column. The total chromatographic run time was 4.0 min and the elution of FDP, MPL and IS occurred at 1.05, 2.59 and 1.65 min, respectively. A linear response function was established for the range of concentrations 0.59–1148 and 0.53–991 ng/mL for FDP and MPL, respectively, in rat plasma. The intra‐ and inter‐day accuracy and precision values for FDP and MPL met the acceptance as per FDA guidelines. FDP and MPL were stable in battery of stability studies viz., bench‐top, auto‐sampler and freeze–thaw cycles. The validated assay was applied to a pharmacokinetic study in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A highly sensitive, rapid assay method has been developed and validated for the estimation of bicalutamide in mouse plasma using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the negative‐ion mode. The assay procedure involves extraction of bicalutamide and tolbutamide (internal standard, IS) from mouse plasma with a simple protein precipitation method. Chromatographic separation was achieved using an isocratic mobile phase (0.2% formic acid:acetonitrile, 35:65, v/v) at a flow rate of 0.5 mL/min on an Atlantis dC18 column (maintained at 40 ± 1°C) with a total run time of 3.0 min. The MS/MS ion transitions monitored were m/z 428.9 → 254.7 for bicalutamide and m/z 269.0 → 169.6 for IS. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 1.04 ng/mL and the linearity range extended from 1.04 to 1877 ng/mL. The intra‐ and inter‐day precisions were in the ranges of 0.49–4.68 and 2.62–4.15, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A high‐throughput, simple, highly sensitive and specific LC‐MS/MS method has been developed for simultaneous estimation of simvastatin acid (SA), amlodipine (AD) and valsartan (VS) with 500 µL of human plasma using deuterated simvastatin acid as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode (MRM) using electrospray ionization. The assay procedure involved precipitation of SA, AD, VS and IS from plasma with acetonitrile. The total run time was 2.8 min and the elution of SA, AD, VS and IS occurred at 1.81, 1.12, 1.14 and 1.81 min, respectively; this was achieved with a mobile phase consisting of 0.02 m ammonium formate (pH 4.5):acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on an X‐Terra C18 column. A linear response function was established for the range of concentrations 0.5–50 ng/mL (> 0.994) for VS and 0.2–50 ng/mL (> 0.996) for SA and AD. The method validation parameters for all three analytes met the acceptance as per FDA guidelines. This novel method has been applied to human pharmacokinetic study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A simple, specific and reproducible liquid chromatography–electrospray ionization mass spectrometry was developed and validated for the determination of jolkinolide B, a potential antitumor active component isolated from Euphorbia fischeriana, in rat plasma. Chromatographic separation was achieved on a Venusil MP‐C18 column using an isocratic elution. Jolkinolide B and osthole (internal standard) were monitored by positive electrospray ionization in the selected reaction monitoring mode. Good linearity (r2 > 0.996) was achieved by a weighted (1/x2) linear least‐squares regression over a concentration range of 6.50–2600 ng/mL. The accuracy and precision of the assay were satisfactory and the method proved to be applicable to pharmacokinetics following a single intravenous bolus injection of jolkinolide B to rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A fast, sensitive, and efficient ultra‐fast LC–ESI‐MS/MS method was developed for the simultaneous quantitation of six highly toxic Aconitum alkaloids, that is, aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine, and benzoylhypaconine, in rat plasma after oral administration of crude ethanol extracts from Aconiti kusnezoffii radix by ultrasonic extraction, reflux extraction for 1 h, and reflux extraction for 3 h, respectively. The separation of six Aconitum alkaloids and aminopyrine (internal standard) was performed on an InertSustain® C18 column, and the quantification of the analytes was performed on a 4000Q ultra‐fast LC–MS/MS system with turbo ion spray source in the positive ion and multiple‐reaction monitoring mode. Absolute recoveries ranged within 65.06–85.1% for plasma samples. The intra‐ and interday precision and accuracy of analytes were satisfactory. The methods were validated with sensitivity reaching the lower LOQ for aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine, and benzoylhypaconine, which were 0.025, 0.025, 0.050, 0.025, 0.025, and 0.100 ng/mL, respectively. The method was successfully applied to a pharmacokinetic study of six Aconitum alkaloids in rat plasma after oral administration of crude ethanol extracts from the raw root of Aconitum kusnezoffii Reichb. by three different extraction processes.  相似文献   

17.
A sensitive and rapid liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for determination of bakkenolide D (BD), which was further applied to assess the pharmacokinetics of BD. In the LC‐MS/MS method, the multiple reaction monitoring mode was used and columbianadin was chosen as internal standard. The method was validated over the range of 1–800 ng/mL with a determination coefficient >0.999. The lower limit of quantification was 1 ng/mL in plasma. The intra‐ and inter‐day accuracies for BD were 91–113 and 100–104%, respectively, and the inter‐day precision was <15%. After a single oral dose of 10 mg/kg of BD, the mean peak plasma concentration of BD was 10.1 ± 9.8 ng/mL at 2 h. The area under the plasma concentration–time curve (AUC0–24 h) was 72.1 ± 8.59 h ng/mL, and the elimination half‐life (T1/2) was 11.8 ± 1.9 h. In case of intravenous administration of BD at a dosage of 1 mg/kg, the AUC0–24 h was 281 ± 98.4 h?ng/mL, and the T1/2 was 8.79 ± 0.63 h. Based on these results, the oral bioavailability of BD in rats at 10 mg/kg is 2.57%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A highly sensitive, rapid assay method has been developed and validated for the estimation of S‐citalopram (S‐CPM) in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves a simple liquid–liquid extraction of S‐CPM and phenacetin (internal standard, IS) from rat plasma with t‐butyl methyl ether. Chromatographic separation was operated with 0.2% formic acid:acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on a Symmetry Shield RP18 column with a total run time of 3.0 min. The MS/MS ion transitions monitored were 325.26 → 109.10 for S‐CPM and 180.10 → 110.10 for IS. Method validation and pre‐clinical sample analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.5 ng/mL and the linearity was observed from 0.5 to 5000 ng/mL. The intra‐ and inter‐day precisions were in the range of 1.14–5.56 and 0.25–12.3%, respectively. This novel method has been applied to a pharmacokinetic study and to estimate brain‐to‐plasma ratio of S‐CPM in rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Binding assays for the γ‐aminobutyric acid (GABA) transporter GAT3 can be assumed to significantly facilitate screening for respective inhibitors. As appropriate labeled ligands for this promising drug target are not available so far, we started efforts to set up mass spectrometry‐based binding assays (MS binding assays), for which labeled markers are not required. Therefore, we developed a sensitive and rapid LC‐ESI‐MS/MS quantification method for DDPM‐1007 {(RS)‐1‐[4,4,4‐Tris(4‐methoxyphenyl)but‐2‐en‐1‐yl]piperidine‐3‐carboxylic acid}, one of the most potent GAT3 inhibitors yet known, as a potential GAT3 marker. Using a 50 × 2 mm C8 column in combination with a mobile phase composed of 10 mm ammonium bicarbonate buffer pH 8.0 and acetonitrile (60:40, v/v) at a flow rate of 450 μL/min DDPM‐1007 could be analyzed in the positive multiple reaction monitoring mode [(m/z) 502.5 → 265.4] within a chromatographic cycle time of 3 min. Deuterated DDPM‐1007 [(2H9)DDPM‐1007] was synthesized and employed as internal standard. This way DDPM‐1007 could be quantified in a range from 100 pm to10 nm in the matrix resulting from respective binding experiments without any sample preparation. The established quantification method met the requirements of the FDA guidance for bioanalytical method validation concerning linearity and intra‐ and inter‐batch accuracy. Based on this LC‐ESI‐MS/MS quantification preliminary MS binding assays employing membrane preparations obtained from a stably GAT3 expressing HEK293 cell line and DDPM‐1007 as nonlabeled GAT3 marker could be performed. In these experiments specific binding of DDPM‐1007 at GAT3 could be unambiguously detected. Additionally, the established LC‐MS method provides a suitable analytical tool for further pharmacokinetic characterization of DDPM‐1007, as exemplified for its logD determination. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A highly sensitive and specific LC‐MS/MS method has been developed for simultaneous estimation of nortriptyline (NTP) and 10‐hydroxynortriptyline (OH‐NTP) in human plasma (250 µL) using carbamazepine as an internal standard (IS). LC‐MS/MS was operated under the multiple reaction‐monitoring mode using the electrospray ionization technique. A simple liquid–liquid extraction process was used to extract NTP, OH‐NTP and IS from human plasma. The total run time was 2.5 min and the elution of NTP, OH‐NTP and IS occurred at 1.44, 1.28 and 1.39 min, respectively; this was achieved with a mobile phase consisting of 20 mm ammonium acetate : acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on a HyPURITY C18 column. The developed method was validated in human plasma with a lower limit of quantitation of 1.09 ng/mL for both NTP and OH‐NTP. A linear response function was established for the range of concentrations 1.09–30.0 ng/mL (r > 0.998) for both NTP and OH‐NTP. The intra‐ and inter‐day precision values for NTP and OH‐NTP met the acceptance as per FDA guidelines. NTP and OH‐NTP were stable in a battery of stability studies, i.e. bench‐top, auto‐sampler and freeze–thaw cycles. The developed assay was applied to a pharmacokinetic study in humans. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号