首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The quest for ligands that specifically bind to particular G‐quadruplex nucleic acid structures is particularly important to conceive molecules with specific effects on gene expression or telomere maintenance, or conceive structure‐specific molecular probes. Using electrospray mass spectrometry in native conditions, we reveal a highly cooperative and selective 2:1 binding of CuII‐tolylterpyridine complexes to human telomeric G‐quadruplexes. Circular dichroism and comparisons of affinities for different sequences reveal a marked preference for antiparallel structures with diagonal loops and/or wide‐medium–narrow‐medium groove‐width order. The cooperativity is attributed to conformational changes in the polymorphic telomeric G‐quadruplex sequences, which convert preferably into an antiparallel three‐quartet topology upon binding of two ligands.  相似文献   

3.
Sniffing out proteins : Fluorescent DNA G‐quadruplexes have been used for building versatile signaling receptors for proteins in a single solution. Introducing a protein sample to the ensemble results in a unique emission signature for unambiguous identification (see scheme, R=fluorophore). The self‐assembled, pattern‐based protein detection systems are easily fabricated, have the potential for high‐throughput operations, and have the ability to handle small protein samples.

  相似文献   


4.
G‐rich RNA and DNA oligonucleotides derived from the human telomeric sequence were assembled onto addressable cyclopeptide platforms through oxime ligations and copper‐catalyzed azide‐alkyne cycloaddition (CuAAc) reactions. The resulting conjugates were able to fold into highly stable RNA and DNA:RNA hybrid G‐quadruplex (G4) architectures as demonstrated by UV, circular dichroism (CD), and NMR spectroscopic analysis. Whereas rationally designed parallel RNA and DNA:RNA hybrid G4 topologies could be obtained, we could not force the formation of an antiparallel RNA G4 structure, thus supporting the idea that this topology is strongly disfavored. The binding affinities of four representative G4 ligands toward the discrete RNA and DNA:RNA hybrid G4 topologies were compared to the one obtained with the corresponding DNA G4 structure. Surface plasmon resonance (SPR) binding analysis suggests that the accessibility to G4 recognition elements is different among the three structures and supports the idea that G4 ligands might be shaped to achieve structure selectivity in a biological context.  相似文献   

5.
Telomeric DNA represents a novel target for the development of anticancer drugs. By application of a catalytic metallodrug strategy, a copper–acridine–ATCUN complex (CuGGHK‐Acr) has been designed that targets G‐quadruplex telomeric DNA. Both fluorescence solution assays and gel sequencing demonstrate the CuGGHK‐Acr catalyst to selectively bind and cleave the G‐quadruplex telomere sequence. The cleavage pathway has been mapped by matrix assisted laser desorption ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) experiments. CuGGHK‐Acr promotes significant inhibition of cancer cell proliferation and shortening of telomere length. Both senescence and apoptosis are induced in the breast cancer cell line MCF7.  相似文献   

6.
The interaction between 13‐phenylalkyl and 13‐diphenylalkyl berberine derivatives ( NAX ) and human telomeric DNA G4 structures has been investigated by both spectroscopic and crystallographic methods. NAX042 and NAX053 are the best compounds improving the performance of the natural precursor berberine. This finding is in agreement with the X‐ray diffraction result for the NAX053 ‐Tel12 adduct, showing the ligand which interacts via π‐stacking, sandwiched at the interface of two symmetry‐related quadruplex units, with its benzhydryl group contributing to the overall stability of the adduct by means of additional π‐stacking interactions with the DNA residues. The berberine derivatives were also investigated for their cytotoxic activity towards a panel of human cancer cell lines. Compounds NAX042 and NAX053 affect the viability of cancer cell lines in a dose‐dependent manner.  相似文献   

7.
Assembly of G‐quadruplexes guided by DNA triplexes in a controlled manner is achieved for the first time. The folding of triplex sequences in acidic conditions brings two separated guanine‐rich sequences together and subsequently a G‐quadruplex structure is formed in the presence of K+. Based on this novel platform, label‐free fluorescent logic gates, such as AND, INHIBIT, and NOR, are constructed with ions as input and the fluorescence of a G‐quadruplex‐specific fluorescent probe NMM as output.  相似文献   

8.
Guanine‐rich sequences of DNA can assemble into tetrastranded structures known as G‐quadruplexes. It has been suggested that these secondary DNA structures could be involved in the regulation of several key biological processes. In the human genome, guanine‐rich sequences with the potential to form G‐quadruplexes exist in the telomere as well as in promoter regions of certain oncogenes. The identification of these sequences as novel targets for the development of anticancer drugs has sparked great interest in the design of molecules that can interact with quadruplex DNA. While most reported quadruplex DNA binders are based on purely organic templates, numerous metal complexes have more recently been shown to interact effectively with this DNA secondary structure. This Review provides an overview of the important roles that metal complexes can play as quadruplex DNA binding molecules, highlighting the unique properties metals can confer to these molecules.  相似文献   

9.
A GNA (glycol nucleic acid) functionalized nucleoside analogue containing the artificial nucleobase 1H‐imidazo[4,5‐f][1,10]phenanthroline (P) was used to form a copper(I)‐mediated base pair within a DNA duplex. The geometrical constraints imposed by the artificial nucleobase play a pivotal role in this unprecedented stabilization of copper(I) in aqueous medium via metal‐mediated base pairing. The formation of the copper(I)‐mediated base pair was investigated by temperature‐dependent UV spectroscopy and CD spectroscopy. The metal‐mediated base pair stabilizes the DNA oligonucleotide duplex by 23 °C. A redox chemistry approach confirmed that this base pair formation was due to the incorporation of copper(I) into the duplex. This first report of a copper(I)‐mediated base pair adds metal‐based diversity to the field and consequently opens up the range of possible applications of metal‐modified nucleic acids.  相似文献   

10.
A water‐soluble template‐assembled synthetic G‐quartet (TASQ) based on the use of a macrocyclodecapeptide scaffold was designed to display stable intramolecular folds alone in solution. The preformation of the guanine quartet, demonstrated by NMR and CD investigations, results in enhanced peroxidase‐type biocatalytic activities and improved quadruplex‐interacting properties. Comparison of its DNAzyme‐boosting properties with the ones of previously published TASQ revealed that, nowadays, it is the best DNAzyme‐boosting agent.  相似文献   

11.
A four‐repeat human telomere DNA sequence without the 3′‐end guanine, d[TAGGG(TTAGGG)2TTAGG] (htel1‐ΔG23) has been found to adopt two distinct two G‐quartet antiparallel basket‐type G‐quadruplexes, TD and KDH+ in presence of KCl. NMR, CD, and UV spectroscopy have demonstrated that topology of KDH+ form is distinctive with unique protonated T18?A20+?G5 base triple and other capping structural elements that provide novel insight into structural polymorphism and heterogeneity of G‐quadruplexes in general. Specific stacking interactions amongst two G‐quartets flanking base triples and base pairs in TD and KDH+ forms are reflected in 10 K higher thermal stability of KDH+. Populations of TD and KDH+ forms are controlled by pH. The (de)protonation of A20 is the key for pH driven structural transformation of htel1‐ΔG23. Reversibility offers possibilities for its utilization as a conformational switch within different compartments of living cell enabling specific ligand and protein interactions.  相似文献   

12.
DNAzymes are widely used as functional units for creating DNA-based sensors and devices. Switching of DNAzyme activity by external stimuli is of increasing interest. Herein we report a CuII-responsive DNAzyme rationally designed by incorporating one of the most stabilizing artificial metallo-base pairs, a CuII-mediated carboxyimidazole base pair (ImC-CuII-ImC), into a known RNA-cleaving DNAzyme. Cleavage of the substrate was suppressed without CuII, but the reaction proceeded efficiently in the presence of CuII ions. This is due to the induction of a catalytically active structure by ImC-CuII-ImC pairing. The on/off ratio was as high as 12-fold, which far exceeds that of the previously reported DNAzyme with a CuII-mediated hydroxypyridone base pair. The DNAzyme activity can be regulated specifically in response to CuII ions during the reaction through the addition, removal, or reduction of CuII. This approach should advance the development of stimuli-responsive DNA systems with a well-defined sharp switching function.  相似文献   

13.
The oligonucleotide d(TX)9, which consists of an octadecamer sequence with alternating non‐canonical 7‐deazaadenine (X) and canonical thymine (T) as the nucleobases, was synthesized and shown to hybridize into double‐stranded DNA through the formation of hydrogen‐bonded Watson–Crick base pairs. dsDNA with metal‐mediated base pairs was then obtained by selectively replacing W‐C hydrogen bonds by coordination bonds to central silver(I) ions. The oligonucleotide I adopts a duplex structure in the absence of Ag+ ions, and its stability is significantly enhanced in the presence of Ag+ ions while its double‐helix structure is retained. Temperature‐dependent UV spectroscopy, circular dichroism spectroscopy, and ESI mass spectrometry were used to confirm the selective formation of the silver(I)‐mediated base pairs. This strategy could become useful for preparing stable metallo‐DNA‐based nanostructures.  相似文献   

14.
15.
16.
The alignment of Cu 2+ ions along a modified DNA helix is studied with either hydroxypyridone (H) or bis(salicylaldehyde)ethylenediamine (S‐en) metalated base pairs (MBPs). The conformational motion of H‐MBP leads to the interlinking of the H‐MBPs by an extended Cu‐O network that is ferromagnetic, whereas the conformational freezing of the S‐en‐MBP leads to an ordered pairwise‐stacked arrangement that is weakly antoferrimagnetic.

  相似文献   


17.
Metal‐organic frameworks (MOFs) have drawn increasing attentions as promising candidates for functional devices. Herein, we present MOF films in constructing memory devices with alcohol mediated resistance switching property, where the resistance state is controlled by applying alcohol vapors to achieve multilevel information storage. The ordered packing mode and the hydrogen bonding system of the guest molecules adsorbed in MOF crystals are shown to be the reason for the alcohol mediated electrical switching. This chemically mediated memory device can be a candidate in achieving environment‐responsive devices and exhibits potential applications in wearable information storage systems.  相似文献   

18.
19.
The combination of a bent diamino(nickel(II) porphyrin) with 2‐formylpyridine and FeII yielded an FeII4L6 cage. Upon treatment with the fullerenes C60 or C70, this cage was found to transform into a new host–guest complex incorporating three FeII centers and four porphyrin ligands, in an arrangement that is hypothesized to maximize π interactions between the porphyrin units of the host and the fullerene guest bound within its central cavity. The new complex shows coordinative unsaturation at one of the FeII centers as the result of the incommensurate metal‐to‐ligand ratio, which enabled the preparation of a heterometallic cone‐shaped CuIFeII2L4 adduct of C60 or C70.  相似文献   

20.
The toxic oxidative damage of G‐quadruplexes (G4), linked to neurodegenerative diseases, may arise from their ability to bind and oxidatively activate cellular hemin. However, there have been no precise studies on how telomeric G4 enhances the low intrinsic peroxidase activity of hemin. Herein, a label‐free and nanopore‐based strategy was developed to explore the enhancement mechanism of peroxidase activity of hemin induced by telomeric G4 (d(TTAGGG)n). The nanopore‐based strategy demonstrated that there were simultaneously two different binding modes of telomere G4 to hemin. At the single‐molecule level, it was found that the hybrid structural telomeric G4 directly binds to hemin (the affinity constant (Ka)≈106 m ?1) to form a tight complex, and some of them underwent a topological change to a parallel structure with an enhancement of Ka to approximately 107 m ?1. Through detailed analysis of the topology and peroxidase activity and molecular modeling investigations, the parallel telomere G4/hemin DNAzyme structure was proven to be preferable for high peroxidase activity. Upon strong π–π stacking, the parallel structural telomere G4 supplied a key axial ligand to the hemin iron, which accelerated the intermediate compound formation with H2O2 in the catalytic cycle. Our studies developed a label‐free and single‐molecule strategy to fundamentally understand the catalytic activity and mechanism of telomeric DNAzyme, which provides some support for utilizing the toxic, oxidative‐damage property in cellular oxidative disease and anticancer therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号