首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Deep‐ultraviolet nonlinear optical (DUV NLO) crystals are the key materials to extend the output range of solid‐state lasers to below 200 nm. The only practical material KBe2BO3F2 suffers high toxicity through beryllium and strong layered growth. Herein, we propose a beryllium‐free material design and synthesis strategy for DUV NLO materials. Introducing the (BO3F)4−, (BO2F2)3−, and (BOF3)2− groups in borates could break through the fixed 3D B–O network that would produce a larger birefringence without layering and simultaneously keep a short cutoff edge down to DUV. The theoretical and experimental studies on a series of fluorooxoborates confirm this strategy. Li2B6O9F2 is identified as a DUV NLO material with a large second harmonic generation efficiency (0.9×KDP) and a large predicted birefringence (0.07) without layering. This study provides a feasible way to break down the DUV wall for NLO materials.  相似文献   

2.
The search of new borates with improved functional properties has attracted considerable attention. Herein, a new polar fluorooxoborate, NaB4O6F (NBF) was prepared by high‐temperature solid‐state reaction. NBF belongs to the AB4O6F family (A=alkali metal or ammonium), a series of compounds that undergoes significant cation‐dependent structural changes. NBF is of particular interest owing to the special cation position. Temperature‐dependent ionic conductivity measurements show that NBF is a solid ionic conductor, and it has the lowest active energy of 32.5 kJ mol−1 of fluorooxoborates. NBF also shows a second‐harmonic generation (SHG) response of 0.9×KH2PO4 and 0.2×β‐BaB2O4, at 1064 and 532 nm, respectively, and it has a short UV cutoff edge below 180 nm. Based on bond valence (BV) concepts, symmetry analysis, and the first principles calculation, the unique [B4O6F] layer can be regarded as the “multifunctional unit”, which is responsible for the observed properties of NBF.  相似文献   

3.
A novel concept to obtain the deep‐ultraviolet (DUV) nonlinear optical (NLO) materials is proposed based on the assembling of one‐dimensional (1D) polar motifs into quasi‐1D polymer patterns. Based on the first‐principles calculations, we have successfully discovered an excellent DUV NLO polymer, i.e., poly(difluorophosphazene), with the chemical formula of (PNF2)n. Calculations reveal that PNF2 has a larger band gap, a stronger second harmonic generation effect, a larger birefringence, and a shorter phase‐matching cutoff than KBe2BO3F2. These findings not only demonstrate that the PNF2 is the first reported DUV NLO polymer, but also could open a new direction to discover novel DUV NLO materials in polymer systems.  相似文献   

4.
Fluorooxoborates have inspired investigations of deep‐ultraviolet (DUV) nonlinear optical (NLO) materials that can meet the multiple criteria. Herein, five stable structures with the composition of BaB2O3F2 (I–V) are discovered using the ab initio evolutionary algorithm. Among them, BaB2O3F2‐I has been synthesized experimentally and confirms the reliability of the method. All of the predicted structures possess extremely wide band gaps (8.1–9.0 eV). Moreover, four new structures exhibit giant second harmonic generation (SHG) coefficients (>3×KDP, d36=0.39 pm V?1). A novel type of the [BOF] layer with BO3:BO3F ratio of [1:1] is found in BaB2O3F2‐II and BaB2O3F2‐III. While BaB2O3F2‐IV and BaB2O3F2‐V are solely composed of the BO3F group and have colossal SHG coefficients (ca. 4×KDP). It gives the direct evidence that the BO3F group could generate strong SHG effect. Most importantly, the influences of BO3:BO3F ratio and their number density on band gap, birefringence and SHG effects are investigated.  相似文献   

5.
6.
Two mixed‐metal gallium iodate fluorides, namely, α‐ and β‐Ba2[GaF4(IO3)2](IO3) ( 1 and 2 ), have been designed by the aliovalent substitutions of α‐ and β‐Ba2[VO2F2(IO3)2](IO3) ( 3 and 4 ) involving one cationic and two anionic sites. Both 1 and 2 display large second‐harmonic generation responses (≈6×KH2PO4 (KDP)), large energy band gaps (4.61 and 4.35 eV), wide transmittance ranges (≈0.27–12.5 μm), and high relevant laser‐induced damage thresholds (29.7× and 28.3×AgGaS2, respectively), which indicates that 1 and 2 are potential second‐order nonlinear optical materials in the ultraviolet to mid‐infrared. Our studies propose that three‐site aliovalent substitution is a facile route for the discovery of good NLO materials.  相似文献   

7.
8.
9.
The single crystals of Ba2Cd(B3O6)2 were grown by the spontaneous crystallization method for the first time. They crystallize in the centrosymmetric trigonal space group R$\bar{3}$ with a = 7.143(3) Å, c = 17.405(16) Å, and Z = 3. The structure is characterized by isolated B3O6 units, and the Ba2+ and Cd2+ cations connect with B3O6 rings to form three dimensional structure. The TG/DSC and XRD results reveal that Ba2Cd(B3O6)2 melts congruently. First‐principles electronic structure calculation performed with the density functional theory (DFT) method shows that the calculated bandgaps are 4.66 eV, which is in good agreement with the UV/Vis/NIR experimental value 4.59 eV. The calculation shows that the Ba2Cd(B3O6)2 crystal has a large birefringence (Δn = 0.0875–0.0569 from 270 nm to 2600 nm), which demonstrates that Ba2Cd(B3O6)2 is a potential birefringence crystal.  相似文献   

10.
11.
The development of new nonlinear optical (NLO) materials for deep‐ultraviolet (DUV) applications is in great demand. However, the synthesis of an ideal DUV NLO crystal is a serious challenge. Herein, three new alkali‐metal fluorooxoborates, AB4O6F (A=K, Rb, and Cs, and a mixed cation between two of them), were successfully synthesized by cation regulation. It is found that all reported compounds exhibit short UV absorption edges (<190 nm), and show second harmonic generation (SHG) responses ranging from 0.8 to 1.9 KH2PO4 (KDP). Interestingly, by judicious selection of the A‐site alkali‐metal cations, the arrangement of NLO‐active structural units is fine‐tuned to an optimal configuration, which contributes to large SHG responses.  相似文献   

12.
Fluorooxoborates, benefiting from the large optical band gap, high anisotropy, and ever‐greater possibility to form non‐centrosymmetric structures activated by the large polarization of [BOxF4?x](x+1)? building blocks, have been considered as the new fertile fields for searching the ultraviolet (UV) and deep‐UV nonlinear optical (NLO) materials. Herein, we report the first asymmetric alkaline‐earth metal fluorooxoborate SrB5O7F3, which is rationally designed by taking the classic Sr2Be2B2O7 (SBBO) as a maternal structure. Its [B5O9F3]6? fundamental building block with near‐planar configuration composed by two edge‐sharing [B3O6F2]5? rings in SrB5O7F3 has not been reported in any other borates. Solid state 19F and 11B magic‐angle spinning NMR spectroscopy verifies the presence of covalent B?F bonds in SrB5O7F3. Property characterizations reveal that SrB5O7F3 possesses the optical properties required for deep‐UV NLO applications, which make SrB5O7F3 a promising crystal that could produce deep‐UV coherent light by the direct SHG process.  相似文献   

13.
14.
A novel noncentrosymmetric (NCS) polar fluoride sulfate, CsSbF2SO4, was obtained by ionothermal synthesis. A meticulously designed co‐substitution approach was used to successfully replace the [TiO6]8? and [PO4]3? functional groups in KTiOPO4 (KTP) with [SbO4F2]7? and [SO4]2? units, respectively. The structure of CsSbF2SO4 features a pseudo‐3D framework consisting of interconnected 1D [SbF2O2SO4]5? chains of corner‐sharing [SbO4F2]7? octahedra and [SO4]2? tetrahedra. The title compound exhibits a sharply enlarged band gap compared to its parent compound, KTP, benefitting from the introduction of F? ions and the displacement of Sb3+ cations. Second harmonic generation (SHG) measurements manifested that CsSbF2SO4 is phase‐matchable and revealed a strong SHG response of about 3.0 KH2PO4 (KDP), which is the highest value reported for any metal sulfate reported to date. The reported fluoride sulfate is a promising near ultraviolet (UV) nonlinear optical (NLO) material.  相似文献   

15.
16.
17.
18.
A new beryllium‐free deep‐ultraviolet (DUV) nonlinear optical (NLO) material, β‐Rb2Al2B2O7 (β‐RABO), has been synthesized and characterized. The chiral nonpolar acentric material shows second‐harmonic generation (SHG) activity at both 1064 and 532 nm with efficiencies of 2×KH2PO4 and 0.4×β‐BaB2O4, respectively, and exhibits a short absorption edge below 200 nm. β‐Rb2Al2B2O7 has a three‐dimensional structure of corner‐shared Al(BO3)3O polyhedra. The discovery of β‐RABO shows that through careful synthesis and characterization, replacement of KBe2BO3F2 (KBBF) by a Be‐free DUV NLO material is possible.  相似文献   

19.
The stereochemical activity of lone pairs (SCALP) in a cation favors the formation of acentric materials and can enhance the second-harmonic-generation (SHG) response and/or the birefringence. By introducing functional SbIII into sulfates, an anhydrous sulfate of Sb6O7(SO4)2 ( 1 ) is explored. Sb3+ cations are in seesaw configurations and in-phase aligned in a 3D asymmetric dense structure. Compound 1 exhibits an enhanced phase-matching SHG response, a moderate birefringence, a wide transparency window, and considerable environmental stabilities, which result in it being a promising UV nonlinear optical (NLO) material. Theoretical studies reveal that the stereoactive lone pairs on Sb3+ cations make the predominant contribution to the SHG effect. This work will attract more interest from scientists for research into SCALP-cation-based NLO materials.  相似文献   

20.
KBe2BO3F2 (KBBF) is still the only practically usable crystal that can generate deep‐ultraviolet (DUV) coherent light by direct second harmonic generation (SHG). However, applications are hindered by layering, leading to difficulty in the growth of thick crystals and compromised mechanical integrity. Despite efforts, it is still a great challenge to discover new nonlinear optical (NLO) materials that overcome the layering while keeping the DUV SHG available. Now, two new DUV NLO beryllium borates have been successfully designed and synthesized, NH4Be2BO3F2 (ABBF) and γ‐Be2BO3F (γ‐BBF), which not only overcome the layering but also can be used as next‐generation DUV NLO materials with the shortest type I phase‐matching second‐harmonic wavelength down to 173.9 nm and 146 nm, respectively. Significantly, γ‐BBF is superior to KBBF in all metrics and would be the most outstanding DUV NLO crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号