首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Oligo‐meta‐phenylenes have been designed and synthesized as multipotent base materials of single‐layer organic light‐emitting devices. Simple molecular structures of oligo‐meta‐phenylenes composed of linear phenylene arrays benefited from the wealth of modern reactions available for biaryl couplings and were concisely synthesized in a series. Structure‐performance relationship studies with the first seven congeners revealed key features important for the multipotent materials in single‐layer devices. As a result, highly efficient phosphorescent electroluminescence was made possible in a highly simplified device architecture comprising one‐region, single‐layer configurations. Detailed investigations with hole‐only devices disclosed that the hole mobility was effectively retarded by potent materials, which should facilitate hole/electron recombination for electroluminescence.  相似文献   

2.
Organic electroluminescence is considered as the most competitive alternative for the future solid‐state displays and lighting techniques owing to many advantages such as self‐luminescence, high efficiency, high contrast, high color rendering index, ultra‐thin thickness, transparency, flat and flexibility, etc. The development of high‐performance organic electroluminescence has become the continuing focus of research. In this personal account, a brief overview of representative achievements in our study on the design of highly efficient novel organic light‐emitting materials (including fluorescent materials, phosphorescent iridium(III) complexes and conjugated polymers bearing phosphorescent iridium(III) complex) and high‐performance device structures together with working principles are given. At last, we will give some perspectives on this fascinating field, and also try to provide some potential directions of research on the basis of the current stage of organic electroluminescence.  相似文献   

3.
It is important to balance holes and electrons in the emitting layer of organic light‐emitting diodes to maximize recombination efficiency and the accompanying external quantum efficiency. Therefore, the host materials of the emitting layer should transport both holes and electrons for the charge balance. From this perspective, bipolar hosts have been popular as the host materials of thermally activated delayed fluorescent devices and phosphorescent organic light‐emitting diodes. In this review, we have summarized recent developments of bipolar hosts and suggested perspectives of host materials for organic light‐emitting diodes.  相似文献   

4.
《化学:亚洲杂志》2017,12(17):2299-2303
Aromatic difluoroboronated β‐diketone ( BF2DK ) derivatives are a widely known class of luminescent organic materials that exhibit high photoluminescent quantum efficiency and unique aggregation‐dependent fluorescence behavior. However, there have been only a few reports on their use in solid‐state electronic devices, such as organic light‐emitting devices (OLEDs). Herein, we investigated the solid‐state properties and OLED performance of a series of π‐extended BF2DK derivatives that have previously been shown to exhibit intense fluorescence in the solution state. The BF2DK derivatives formed exciplexes with a carbazole derivative and exhibited thermally activated delayed fluorescence (TADF) behavior to give orange electroluminescence with a peak external quantum efficiency of 10 % that apparently exceeds the theoretical efficiency limit of conventional fluorescent OLEDs (7.5 %), assuming a light out‐coupling factor of 30 %.  相似文献   

5.
Since the first report on blue electroluminescence from a soluble poly(9,9‐di‐alkylfluorene), fluorene‐based homo‐ and copolymers have evolved as a major class of polymeric emitters for highly efficient organic light‐emitting diodes. This Review is concerned with the particular properties of soluble derivatives of polyfluorene homopolymers with respect to emission properties, control of color stability and efficiency in electroluminescence, alignment in thin layers and polarized emission. A major point of discussion is the origin of unwanted emission contributions in the photoluminescence and electroluminescence spectra of solid layers as well as concepts to avoid these contributions in order to ensure stable device performance. Further, the alignment of polyfluorenes and their use in polarized light‐emitting diodes is addressed.  相似文献   

6.
Functionalization of a red phosphorescent iridium(III) complex core surrounded by rigid polyphenylene dendrons with a hole‐transporting triphenylamine surface allows to prevent the intermolecular aggregation‐induced emission quenching, improves charge recombination, and therefore enhances photo‐ and electroluminescence efficiencies of dendrimer in solid state. These multifunctional shape‐persistent dendrimers provide a new pathway to design highly efficient solution processable materials for phosphorescent organic light‐emitting diodes (PhOLEDs).  相似文献   

7.
本文简述了有机电致发光及有机发光二极管的基本原理 ;概述了小分子配合物电致发光材料的最新研究进展 ,讨论了它们的光电性质、器件的发光效率和稳定性 ;展望了小分子配合物电致发光材料的前景.  相似文献   

8.
A novel isoquinoline‐containing C^N^C ligand and its phosphorescent triphenylamine‐based alkynylgold(III) dendrimers have been synthesized. These alkynylgold(III) dendrimers serve as phosphorescent dopants in the fabrication of efficient solution‐processable organic light‐emitting devices (OLEDs). The photophysical, electrochemical, and electroluminescence properties were studied. A saturated red emission with CIE coordinates of (0.64, 0.36) and a high EQE value of 3.62 % were achieved. Unlike other red‐light‐emitting iridium(III) dendrimers, a low turn‐on voltage of less than 3 V and a reduced efficiency roll‐off at high current densities were observed; this can be accounted for by the enhanced carrier transporting ability and the relatively short lifetimes in the high‐generation dendrimers. This class of alkynylgold(III) dendrimers are promising candidates as phosphorescent dopants in the fabrication of solution‐processable OLEDs.  相似文献   

9.
We have developed efficient white‐light‐emitting polymers through the incorporation of low‐bandgap orange‐light‐emitting benzoselenadiazole ( BSeD ) moieties into the backbone of a blue‐light‐emitting bipolar polyfluorene (PF) copolymer, which contains hole‐transporting triphenylamine and electron‐transporting oxadiazole pendent groups. By carefully controlling the concentrations of the low‐energy‐emitting species in the resulting copolymers, partial energy transfer from the blue‐fluorescent PF backbone to the orange‐fluorescent segments led to a single polymer emitting white light and exhibiting two balanced blue and orange emissions simultaneously. Efficient polymer light‐emitting devices prepared using this copolymer exhibited luminance efficiencies as high as 4.1 cd/A with color coordinates (0.30, 0.36) located in the white‐light region. Moreover, the color coordinates remained almost unchanged over a range of operating potentials. A mechanistic study revealed that energy transfer from the PF backbone to the low‐bandgap segments, rather than charge trapping, was the main operating process involved in the electroluminescence process. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2938–2946, 2007  相似文献   

10.
The design and synthesis of highly efficient deep red (DR) and near‐infrared (NIR) organic emitting materials with characteristic of thermally activated delayed fluorescence (TADF) still remains a great challenge. A strategy was developed to construct TADF organic solid films with strong DR or NIR emission feature. The triphenylamine (TPA) and quinoxaline‐6,7‐dicarbonitrile (QCN) were employed as electron donor (D) and acceptor (A), respectively, to synthesize a TADF compound, TPA‐QCN. The TPA‐QCN molecule with orange‐red emission in solution was employed as a dopant to prepare DR and NIR luminescent solid thin films. The high doped concentration and neat films exhibited efficient DR and NIR emissions, respectively. The highly efficient DR and NIR organic light‐emitting devices (OLEDs) were fabricated by regulating TPA‐QCN dopant concentration in the emitting layers.  相似文献   

11.
Blue light‐emitting materials are receiving considerable academic and industrial interest due to their potential applications in optoelectronic devices. In this study, blue light‐emitting copolymers based on 9,9′ ‐ dioctylfluorene and 2,2′‐(1,4‐phenylene)‐bis(benzimidazole) moieties were synthesized through palladium‐catalyzed Suzuki coupling reaction. While the copolymer consisting of unsubstituted benzimidazoles (PFBI0) is insoluble in common organic solvents, its counterpart with N‐octyl substituted benzimidazoles (PFBI8) enjoys good solubility in toluene, tetrahydrofuran, dichloromethane (DCM), and chloroform. The PFBI8 copolymer shows good thermal stability, whose glass transition temperature and onset decomposition temperature are 103 and 428 °C, respectively. Its solutions emit blue light efficiently, with the quantum yield up to 99% in chloroform. The electroluminescence (EL) device of PFBI8 with the configuration of indium‐tin oxide/poly(ethylenedioxythiophene):poly(styrene sulfonic acid)/PFBI8/1,3,5‐tris(1‐phenyl‐1H‐benzimidazole‐2‐yl)benzene/LiF/Al emits blue light with the maximum at 448 nm. Such unoptimized polymer light‐emitting diode (PLED) exhibits a maximum luminance of 1534 cd/m2 with the current efficiency and power efficiency of 0.67 cd/A and 0.20 lm/W, respectively. The efficient blue emission and good EL performance make PFBI8 promising for optoelectronic applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
White organic light emitting diodes (WOLEDs) are promising devices for application in low energy consumption lighting since they combine the potentialities of high efficiency and inexpensive production with the appealing features of large surfaces emitting good quality white light. However, lifetime, performances and costs still have to be optimized to make WOLEDs commercially competitive as alternative lighting sources. Development of efficient and stable emitters plays a key role in the progress of WOLED technology. This tutorial review discusses the main approaches to obtain white electroluminescence with organic and organometallic emitters. Representative examples of each method are reported highlighting the most significant achievements together with open issues and challenges to be faced by future research.  相似文献   

13.
Optical and electroluminescent properties of a new soluble anthracene‐containing polyimide (ACPI) was studied. Solubility of ACPI in organic solvents allows direct spin casting of the polymer films exhibiting intense photo‐ and electroluminescence (EL) in the visible range. This non‐conjugated polymer was used as emitting and electron‐hole transporting layers in polymer light‐emitting devices (LEDs). EL properties of the uni‐ and bilayer LEDs are discussed in terms of the band structure, bipolar transport and electron donor‐acceptor interactions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
White‐light‐emitting materials and devices have attracted enormous interest because of their great potential for various lighting applications. We herein describe the light‐emitting properties of a series of new difunctional organic molecules of remarkably simple structure consisting of two terminal 4‐pyridone push–pull subunits separated by a polymethylene chain. They were found to emit almost “pure” white light as a single organic compound in the solid state, as well as when incorporated in a polymer film. To the best of our knowledge, they are the simplest white‐light‐emitting organic molecules reported to date.  相似文献   

15.
There has been extensive research on the development of organic optoelectronic devices, such as organic light‐emitting diodes, organic field‐effect transistors, and organic solid‐state lasers from various viewpoints, ranging from basic studies to practical applications. As organic materials are used as solids in these devices, the importance of organic chromophores that exhibit intense emissions of visible light in the solid state is greatly increasing in the field of organic electronics. However, highly efficient emission from organic solids is very difficult to attain because most organic emitting materials strongly tend to cause concentration quenching of the luminescence in the condensed phase. Therefore, in order to generate and improve organic optoelectronic devices, it is necessary to design novel chromophores that exhibit superior solid‐state emission performance. This Focus Review covers the recent development of highly emissive organic small molecules whose photoluminescence quantum yields in the solid state have been reported. Following the introduction, the photophysical processes of excited molecules are briefly reviewed. Subsequently, organic solid fluorophores are described with an emphasis on the characteristics of their molecular structures.  相似文献   

16.
The progress of white organic light‐emitting diodes (WOLEDs) via adopting fluorescent and phosphorescent organic materials have attracted commercial interest for their broad range of visible spectrum and potential of 100 % internal quantum efficiency. In this account, smart molecular designs for developing efficient phosphorescent host and good color purity blue fluorescent emitters are prepared to be discussed, especially donor‐acceptor modification to regulate their triplet states and bipolar transport properties. Rational device configuration design strategies were also introduced by cooperating with efficient conventional fluorescent and thermally activated delayed fluorescent emitting molecules to achieve full exciton utilization and simplified device structures, further suggesting perspectives of potentially low‐cost, ideal performance and promoted operational lifetime in WOLED devices.  相似文献   

17.
Rigid polymer backbones have often been considered to be detrimental to the packing of mesogenic pendants, and polyacetylenes have generally been regarded as unpromising materials for light‐emitting applications. Our group, however, has succeeded in creating a series of liquid‐crystalline polyacetylenes with rigid backbones and a variety of light‐emitting polyacetylenes with luminescent chromophores. Here we demonstrate that the rigid polyacetylene skeleton can play a constructive role in guiding the alignments of mesogenic pendants and prove that polyacetylenes can be highly emissive with photoluminescence quantum yields of up to 98% and electroluminescence performances comparable or superior to those of the best blue‐light‐emitting polymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2607–2629, 2003  相似文献   

18.
Donor–π–acceptor type fluorene‐based copolymers with a sulfone unit were designed and synthesized for application in efficient pure‐blue light emitting. The electroluminescence behaviors of these copolymers were investigated by fabricating light‐emitting diodes and electrochemical cell devices. The former device little functioned but the latter worked well. The electrochemical cell devices having a configuration of ITO/PEDOT:PSS/copolymer:ionic liquid/Al exhibited purplish blue electroluminescence with an emission maximum at 434 nm (CIE coordinates (x, y) = (0.17, 0.10)) measured at 7 V. The initial positive scan of the D–π–A polysulfone based light emitting electrochemical cell with a sweep rate of 0.1 V s?1 afforded a maximum luminance of 1080 cd m?2 with a current efficiency of 1.96 cd A?1 at an operating voltage of 12.5 V. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3454–3461  相似文献   

19.
有机电致发光器件的结构、发光机理及表面工程   总被引:3,自引:0,他引:3  
简要介绍有机电致发光器件(OLED)的结构、发光机理、表面工程及检测、有机-无机电致发光材料的复合及制备技术。  相似文献   

20.
Due to the difficulty in achieving high efficiency and high color purity simultaneously, blue emission is the limiting factor for the performance and stability of OLEDs. Since 2003, we have been working on organic light‐emitting diodes (OLEDs), especially on blue light. After a series of molecular designs, novel strategies have been proposed from different aspects. At first, highly efficient deep blue emission could be achieved through molecular design with highly twisted structure to suppress fluorescence quenching and redshift. Deep blue emitters with high efficiency in solid state, a twisted structure with aggregation induced emission (AIE) characteristics was incorporated to inhibit molecular aggregation, and triplet‐triplet fusion (TTF) and hybridized localized charge transfer (HLCT) were adopted to increase the ratio of triplet exciton used. Secondly, a highly efficient blue OLED could be achieved through improving charge transport. New electron transport materials (ETMs) with wide band gap were developed to control charge transport balance in devices. Thirdly, a highly efficient deep blue emission could be achieved through a mesoscopic structure of out‐coupling layer. A mesoscopic photonic structured organic thin film was fabricated on the top of metal electrode by self‐aggregation in order to improve the light out‐coupling efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号