首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Beraprost sodium is an oral prostacyclin analog that was first approved in 1992 (Japan) for the treatment of peripheral vascular disorders. It is administered orally as a tablet available in strength 20 μg. In this paper, we described a liquid chromatography tandem mass spectrometry method that was developed for the quantification of beraprost in human plasma with high sensitivity at picogram per milliliter concentration. The method had been validated in terms of selectivity, sensitivity, accuracy and precision, matrix effect, linearity, recovery and carry‐over according to the Guideline on Bioanalytical Validation from the European Medicines Agency. The standard calibration curve for beraprost was 9.5–1419 pg/mL. This method has been applied successfully to a bioequivalence study with 60 μg of beraprost (three tablets) in 29 healthy volunteers. The results showed that the two formulations of beraprost are bioequivalent.  相似文献   

2.
A simple, rapid, and selective method for determination of plasma biotin was developed using ultra‐high‐performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS). After single‐step protein precipitation with methanol, biotin and stable isotope‐labeled biotin as an internal standard (IS) were chromatographed on a pentafluorophenyl stationary‐phase column (2.1 × 100 mm, 2.7 μm) under isocratic conditions using 10 mm ammonium formate–acetonitrile (93:7, v/v) at a flow rate of 0.6 mL/min. The total chromatographic runtime was 5 min for each injection. Detection was performed in a positive electrospray ionization mode by monitoring selected ion transitions at m/z 245.1/227.0 and 249.1/231.0 for biotin and the IS, respectively. The calibration curve was linear in the range of 0.05–2 ng/mL using 300 μL of plasma. The intra‐ and inter‐day precisions were all <7.1%. The accuracy varied from ?0.7 to 8.2%. The developed UHPLC–MS/MS method was successfully applied to determine plasma biotin concentrations in hemodialysis patients. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
To characterize the preclinical plasma pharmacokinetics of entrectinib, a reproducible and precise assay is necessary. In this study, we developed and validated a simple ultra‐performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) method for the measurement of entrectinib using carbamazepine as the internal standard in rat plasma. Sample preparation was a simple protein precipitation with acetonitrile, then entrectinib was eluted on an Acquity UPLC BEH C18 column (2.1 × 50 mm, 1.7 μm) using a gradient elution with a mobile phase composed of acetonitrile (A) and 0.1% formic acid in water (B). Detection was achieved using multiple‐reaction monitoring in positive ion electrospray ionization mode. The method showed good linearity over the concentration range of 1–250 ng/mL (r2 > 0.9951). The intra‐ and inter‐day precision was determined with the values of 6.3–12.9 and 2.6–6.9%, respectively, and accuracy values of 0.5–11.6%. Matrix effect, extraction recovery, and stability data all met the acceptance criteria of US Food and Drug Administration guidelines for bioanalytical method validation. The method was successfully applied to a pharmacokinetic study. In this study, we developed the complete validated method for the quantification of entrectinib in rat plasma.  相似文献   

4.
Therapeutic drug monitoring of antiepileptic drugs is widely practiced to achieve optimal efficacy and avoid adverse side effects. We describe an ultra‐high‐performance liquid chromatography tandem mass spectrometry (UHPLC/MS/MS) method developed for the monitoring of four frequently prescribed antiepileptic drugs – lamotrigine, levetiracetam, oxcarbazepine and topiramate. The main pharmacologically active metabolite of oxcarbazepine (mono‐hydroxy‐derivative metabolite, MHD) was also quantified. After addition of internal standards and a simple stage of protein precipitation, plasmatic samples were analyzed on a C18 column. All antiepileptic drugs were separated and quantified in 6 min, without interference. A good linearity was observed all over the calibration range (r2 > 0.99), up to 20 μg/mL (40 μg/mL for MHD). The limit of quantification was 0.20 μg/mL (0.40 μg/mL for MHD) with precision and accuracy ranging from 1.0 to 2.1% and from 96.7 to 110.8%, respectively. Intra‐ and inter‐day precision and accuracy values were within 15%. No significant matrix effect was observed for all analytes. Clinical application was successfully evaluated in 259 samples from patients treated for epilepsy or bipolar disorders. In conclusion, a rapid, specific and sensitive UHPLC/MS/MS method was developed and validated for simultaneous quantification of antiepileptic drugs, suitable for therapeutic drug monitoring in neurology and psychiatry.  相似文献   

5.
A simple, high‐throughput and highly sensitive liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) method has been developed for the simultaneous estimation of rosuvastatin and free ezetimibe. Liquid–liquid extraction was carried out using methyl‐tert butyl ether after prior acidification from 300 μL human plasma. The recovery for both the analytes and their deuterated internal standards (ISs) ranged from 95.7 to 99.8%. Rosuvastatin and ezetimibe were separated on Symmetry C18 column using acetonitrile and ammonium formate buffer, pH 3.5 (30:70, v/v) as the mobile phase. The analytes were well resolved with a resolution factor of 3.8. Detection and quantitation were performed under multiple reaction monitoring using ESI(+) for rosuvastatin (m/z 482.0 → 258.1) and ESI(−) for ezetimibe (m/z 407.9 → 271.1). A linear response function was established in the concentration ranges of 0.05–50.0 ng/mL and 0.01–10.0 ng/mL for rosuvastatin and ezetimibe, respectively, with correlation coefficient, r2 ≥ 0.9991. The IS‐normalized matrix factors for the analytes ranged from 0.963 to 1.023. The developed method was successfully used to compare the pharmacokinetics of a fixed‐dose combination tablet of rosuvastatin‐ezetimibe and co‐administered rosuvastatin and ezetimibe as separate tablets to 24 healthy subjects. The reliability of the assay was also assessed by reanalysis of 115 subject samples.  相似文献   

6.
A novel rapid and highly sensitive ultra performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) bioanalytical method was established for the analysis of flibanserin in human plasma. Flibanserin d4 was used as internal standard (IS). Flibanserin and the internal standard (IS) were extracted from the plasma using protein precipitation technique with acetonitrile. A Kinetex C18 (2.6 μm, 2.1 × 50 mm) column was used for chromatographic separation and the mobile phase was a mixture of 20 mm ammonium acetate buffer (pH 4.5)–acetonitrile (50:50, v/v) with an isocratic elution mode and a flow rate of 0.3 mL/min. The analysis was performed on a Xefo TQD Waters mass spectrometer in multiple reaction monitoring mode with a positive electrospray ionization interface. The US Food and Drug Administration guidelines were followed during the bio‐analytical methods validation regarding linearity, precision, accuracy, carryover, selectivity, dilution integrity and stability. The analysis run time was carried out within 2 min over a wide linear concentration range of 5–1000 ng mL?1. Finally, the proposed method was successfully used in a pharmacokinetic study that measured flibanserin concentration in healthy, non‐pregnant female volunteers after a single 100 mg oral dose of flibanserin.  相似文献   

7.
Carbenoxolone is a derivative of glycyrrhetinic acid found in the root of Glycyrrhiza glabra, colloquially known as licorice. It has been used as a treatment for peptic and oral ulcers. In recent years, carbenoxolone has been utilized in basic research for its ability to block gap junctional communication. Better understanding the distribution of carbenoxolone after systemic administration can lead to a better understanding of its potential sites of action. Presented is an ultra high‐performance liquid chromatography tandem mass spectrometer (UHPLC–MS/MS) method for the identification and quantification of carbenoxolone in mouse blood and brain tissue. Twenty mice were injected intraperitoneally with 25 mg/kg carbenoxolone and brain tissue and blood were collected for analysis. Blood concentrations (mean ± SD) at 15, 30, 60 and 120 min were determined to be (n = 5) 5394 ± 778, 2636 ± 836, 1564 ± 541 and 846 ± 252 ng/mL, respectively. Brain concentrations (mean ± SD) at 15, 30, 60 and 120 mins were determined to be (n = 5) 171 ± 62, 102 ± 35, 55 ± 10 and 27 ± 9 ng/g, respectively. The analysis of these specimens at the four different time points resulted in blood and brain half‐lives in mice of ~43 and 41 min, respectively. The UHPLC–MS/MS method was determined to be sensitive and robust for quantification of carbenoxolone.  相似文献   

8.
A rapid and sensitive LC–MS/MS method was developed and validated for the simultaneous determination of buprenorphine and its three metabolites (buprenorphine glucuronide, norbuprenorphine and norbuprenorphine glucuronide) as well as naloxone and its metabolite naloxone glucuronide in the rat plasma. A hydrophilic interaction chromatography column and a mobile phase containing acetonitrile and ammonium formate buffer (pH 3.5) were used for the chromatographic separation. Mass spectrometric detection was achieved by an electrospray ionization source in the positive mode coupled to a triple quadrupole mass analyzer. The calibration curves for the six analytes displayed good linearity over the concentration range 1.0 or 5.0–1000 ng/mL. The intra and inter‐day precision (CV) ranged from 2.68 to 16.4% and from 9.02 to 14.5%, respectively. The intra‐ and inter‐day accuracy (bias) ranged from −14.2 to 15.2% and from −9.00 to 4.80%, respectively. The extraction recoveries for all the analytes ranged from 55 to 86.9%. The LC–MS/MS method was successfully applied to a pharmacokinetic study of buprenorphine–naloxone combination in rats.  相似文献   

9.
Dipyridamole is a classic platelet inhibitor which has been a key medicine in clinical therapy of thrombosis and cerebrovascular disease. A rapid, selective and convenient method using high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) was developed for determination of dipyridamole in human plasma. After protein precipitation of 200 μL plasma with methanol, dipyridamole and diazepam (internal standard) were chromatographed on an Ultimate? XB‐C18 (50 × 2.1 mm i.d, 3 μ) column with the mobile phase consisting of methanol–ammonium acetate (5 mM ; 80 : 20, v/v) at a flow rate of 0.25 mL/min. The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring mode via positive eletrospray ionization source (ESI+). The retention times of dipyridamole and diazepam were 1.4 and 1.2 min, respectively. The method was validated over a concentration range of 0.0180–4.50 μg/mL (r2 ≥ 0.99) with a lower limit of quantitation (LLOQ) of 0.0180 μg/mL for dipyridamole. The intra‐ and inter‐day precisions (RSD) of the assay at all three QC levels were 1.6–12.7% with an accuracy (RE) of ?4.3–1.9%, which meets the requirements of the FDA guidance. The HPLC‐MS/MS method herein described was proved to be suitable for pharmacokinetic study of sustained‐release dipyridamole tablet in volunteers after oral administration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A simple and high sensitive ultra‐high‐performance liquid chromatography tandem mass spectrometry method for the determination of fludrocortisone in human plasma was developed and validated as per guidelines. The analyte and internal standard (IS), fludrocortisone‐d5, were extracted from human plasma via liquid–liquid extraction using tert‐butyl methyl ether. The chromatographic separation was achieved on a Chromolith RP18e column using a mixture of acetonitrile and 2 mm ammonium formate (70:30, v/v) as the mobile phase at a flow rate of 0.7 mL/min. Quantitation was performed on a triple quadrupole mass spectrometer employing electrospray ionization technique, operating in multiple reaction monitoring and positive ion mode. The precursors to product ion transitions monitored for fludrocortisone and IS were m/z 381.2 → 343.2 and 386.2 → 348.4, respectively. The assay was validated with linear range of 40–3000 pg/mL. The intra‐ and inter‐day precisions (relative standard deviation) were within 0.49–7.13 and 0.83–5.87%, respectively. The proposed method was successfully applied to pharmacokinetic studies in humans. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A high‐performance liquid chromatography coupled with Q‐time of flight mass spectrometry (HPLC/Q‐TOF MS) method was developed and validated for the determination of 1, 3‐diaminopropane, putrescine, cadaverine, spermidine and spermine in human plasma. The plasma samples were first pretreated by 10% HClO4 and then derived by benzoyl chloride with 1, 6‐diaminohexane as internal standard. The derived polyamines were separated on a C18 column using a gradient program. The detection was performed on a Q‐TOF MS by positive ionization mode. Calibration curve for each polyamine was obtained in the concentration range of 0.4 ~ 200.0 ng ? ml?1, with limit of detection of 0.02 ~ 0.1 ng ? ml?1. The intra‐ and inter‐day RSD for all polyamines were 2.5–14.0% and 2.9 ~ 13.4%, respectively. The method was applied to determine the polyamines in human plasma from cancer patients and healthy volunteers. Results showed that the mean levels of polyamines in the plasma of cancer patients were higher than that of healthy volunteers, which suggested that the plasma polyamines could be employed as cancer diagnostic indicators in clinical testing. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A highly sensitive and selective ultra‐performance liquid chromatography–tandem mass spectrometry method is described for the simultaneous determination of nomegestrol acetate (NOMAC), a highly selective progestogen, and estradiol (E2), a natural estrogen in human plasma. NOMAC was obtained from plasma by solid‐phase extraction, while E2 was first separated by liquid–liquid extraction with methyl tert‐butyl ether followed by derivatization with dansyl chloride. Deuterated internal standards, NOMAC‐d5 and E2‐d4 were used for better control of extraction conditions and ionization efficiency. The assay recovery of the analytes was within 90–99%. The analytes were separated on UPLC BEH C18 (50 × 2.1 mm, 1.7 μm) column using a mobile phase comprising of acetonitrile and 3.0 mm ammonium trifluoroacetate in water (80:20, v/v) with a resolution factor (Rs) of 3.21. The calibration curves were linear from 0.01 to 10.0 ng/mL for NOMAC and from 1.00 to 1000 pg/mL for E2, respectively. The intra‐ and inter‐batch precision was ≤5.8% and the accuracy of quality control samples ranged from 96.7 to 103.4% for both analytes. The practical applicability of the method is demonstrated by analyzing samples from 18 healthy postmenopausal women after oral administration of 2.5 mg nomegestrol acetate and 1.5 mg estradiol film‐coated tablets under fasting.  相似文献   

13.
Several chemical and biological studies have revealed R,S‐goitrin as the main bioactive constituent of Isatis indigotica Fort., responsible for antiviral antiendotoxin activity; however, few pharmacokinetic studies have been conducted. To comprehend the kinetics of R,S‐goitrin and promote its curative application, a rapid and sensitive UHPLC–MS/MS method was developed. The selected reaction monitoring transitions were m/z 130.0 → 70.0 for R,S‐goitrin and m/z 181.1 → 124.0 for the internal standard in a positive‐ion mode. The established UHPLC–MS/MS method achieved good linearity for R,S‐goitrin at 10–2000 ng/mL. The intra‐ and interday accuracy levels were within ±9.7%, whereas the intraday and interday precision levels were <11.3%. The extraction recovery, stability and matrix effect were within acceptable limits. The validated method was successfully applied for the pharmacokinetic analysis of R,S‐goitrin in rats after oral administration. Moreover, a total of six metabolites were structurally identified through UHPLC–Q/TOF–MS. The proposed metabolic pathways of R,S‐goitrin in rats involve demethylation, acetylation, glutathionylation and oxygenation.  相似文献   

14.
Tilianin is an active flavonoid glycoside found in many medical plants. Data are lacking regarding its pharmacokinetics and disposition in vivo. The objective of this study was to develop a sensitive, reliable and validated ultra‐high‐performance liquid chromatography with tandem mass spectrometry (UHPLC–MS/MS) method to simultaneously quantify tilianin and its main metabolites and to determine its pharmacokinetics in wild‐type and breast cancer resistance protein knockout (Bcrp1−/−) FVB mice. Chromatographic separation was accomplished on a C18 column by utilizing acetonitrile and 0.5 mm ammonium acetate as the mobile phase. Mass spectrometric detection was performed using electrospray ionization in both positive and negative modes. The results showed that the precision, accuracy and recovery, as well as the stability of tilianin and its metabolites in mouse plasma, were all within acceptable limits. Acacetin‐7‐glucuronide and acacetin‐7‐sulfate were the major metabolites of tilianin in mouse plasma. Moreover, systemic exposure of acacetin‐7‐sulfate was significantly higher in Bcrp1 (−/−) FVB mice compared with wild‐type FVB mice. In conclusion, the fully validated UHPLC–MS/MS method was sensitive, reliable, and was successfully applied to assess the pharmacokinetics of tilianin in wild‐type and Bcrp1 (−/−) FVB mice. Breast cancer resistance protein had a significant impact on the elimination of the sulfated metabolite of tilianin in vivo.  相似文献   

15.
TAK‐875 is a selective partial agonist of human GPR40 receptor, which was unexpectedly terminated at phase III clinical trials owing to its severe hepatotoxicity. The purpose of this study was to investigate the pharmacokinetics of TAK‐875 and its toxic metabolite TAK‐875‐acylglucuronide in rat plasma by liquid chromatography tandem mass spectrometry (LC–MS/MS). Plasma samples were extracted with ethyl acetate and chromatographic separations were achieved on a C18 column with water and acetonitrile containing 0.05% ammonium hydroxide as mobile phase. The sample was detected in selected reaction monitoring mode with precursor‐to‐product ion transitions being m/z 523.2 → 148.1, m/z 699.3 → 113.1 and m/z 425.2 → 113.1 for TAK‐875, TAK‐875‐acylglucuronide and IS, respectively. The assay showed good linearity over the tested concentration ranges (r > 0.9993), with the LLOQ being 0.5 ng/mL for both analytes. The extraction recovery was >78.45% and no obvious matrix effect was detected. The highly sensitive LC–MS/MS method has been further applied for the pharmacokinetic study of TAK‐875 and its toxic metabolite TAK‐875‐acylglucuronide in rat plasma. Pharmacokinetics results revealed that oral bioavailability of TAK‐875 was 86.85%. The in vivo exposures of TAK‐875‐acylglucuronide in terms of AUC0–t were 17.54 and 22.29% of that of TAK‐875 after intravenous and oral administration, respectively.  相似文献   

16.
A specific and rapid liquid chromatography–tandem mass spectrometry method is proposed for the simultaneous determination of metformin (MET), saxagliptin (SAXA) and its active metabolite, 5‐hydroxy saxagliptin (5‐OH SAXA) in human plasma. Sample preparation was accomplished from 50 μL plasma sample by solid‐phase extraction using sodium dodecyl sulfate as an ion‐pair reagent. Reversed‐phase chromatographic resolution of analytes was possible within 3.5 min on ACE 5CN (150 × 4.6 mm, 5 μm) column using acetonitrile and10.0 mm ammonium formate buffer, pH 5.0 (80:20, v /v) as the mobile phase. Triple quadrupole mass spectrometric detection was performed using electrospray ionization in the positive ionization mode. The calibration curves showed good linearity (r 2 ≥ 0.9992) over the established concentration range with limit of quantification of 1.50, 0.10 and 0.20 ng/mL for MET, SAXA and 5‐OH SAXA respectively. The extraction recoveries obtained from spiked plasma samples were highly consistent for MET (75.12–77.84%), SAXA (85.90–87.84%) and 5‐OH SAXA (80.32–82.69%) across quality controls. The validated method was successfully applied to a bioequivalence study with a fixed‐dose formulation consisting of 5 mg SAXA and 500 mg MET in 18 healthy subjects. The reproducibility of the assay was demonstrated by reanalysis of 87 incurred samples.  相似文献   

17.
A simple, rapid, sensitive and specific liquid chromatography-tandem mass spectrometry method was developed and validated for quantification of hydrochlorothiazide (I), a common diuretic and anti-hypertensive agent. The analyte and internal standard, tamsulosin (II) were extracted by liquid-liquid extraction with diethyl ether-dichloromethane (70:30, v/v) using a Glas-Col Multi-Pulse Vortexer. The chromatographic separation was performed on a reversed-phase column (Waters symmetry C18) with a mobile phase of 10 mm ammonium acetate-methanol (15:85, v/v). The protonated analyte was quantitated in negative ionization by multiple reaction monitoring with a mass spectrometer. The mass transitions m/z 296.1 solidus in circle 205.0 and m/z 407.2 solidus in circle 184.9 were used to measure I and II, respectively. The assay exhibited a linear dynamic range of 0.5-200 ng/mL for hydrochlorothiazide in human plasma. The lower limit of quantitation was 500 pg/mL, with a relative standard deviation of less than 9%. Acceptable precision and accuracy were obtained for concentrations over the standard curve ranges. A run time of 2.5 min for each sample made it possible to analyze a throughput of more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

18.
AdipoRon is an orally active adiponectin receptor agonist. The aim of this study was to characterize the metabolites of AdipoRon in rat and human liver microsomes using ultra‐high performance liquid chromatography combined with Q‐Exactive Orbitrap tandem mass spectrometry (UPLC‐Q‐Exactive‐Orbitrap‐MS) together with data processing techniques including extracted ion chromatograms and a mass defect filter. AdipoRon (10 μm ) was incubated with liver microsomes in the presence of NADPH and this resulted in a total of 11 metabolites being detected. The identities of these metabolites were characterized by comparing their accurate masses and fragment ions as well as their retention times with those of AdipoRon using MetWorks software. Metabolites M1–M3, M6, and M8–M11 were identified for the first time. Metabolite M4, the major metabolite both in rat and human liver microsomes, was further confirmed using the reference standard. Our results revealed that the metabolic pathways of AdipoRon in liver microsomes were N‐dealkylation (M2), hydroxylation (M, M5–M9), carbonyl reduction (M4) and the formation of amide (M10 and M11). Our results provide valuable information about the in vitro metabolism of AdipoRon, which would be helpful for us to understand the mechanism of the elimination of AdipoRon and, in turn, its effectiveness and toxicity.  相似文献   

19.
An accurate and precise method was developed and validated using LC‐MS/MS to quantify dutasteride in human plasma. The analyte and dutasteride‐13C6 as internal standard (IS) were extracted from 300 μL plasma volume using methyl tert‐butyl ether–n‐hexane (80:20, v/v). Chromatographic analysis was performed on a Gemini C18 (150 × 4.6 mm, 5 µm) column using acetonitrile–5 mm ammonium formate, pH adjusted to 4.0 with formic acid (85:15, v/v) as the mobile phase. Tandem mass spectrometry in positive ionization mode was used to quantify dutasteride by multiple reaction monitoring. The entire data processing was done using Watson LIMSTM software, which provided excellent data integrity and high throughput with improved operational efficiency. The calibration curve was linear in the range of 0.1–25 ng/mL, with intra‐and inter‐batch values for accuracy and precision (coefficient of variation) ranging from 95.8 to 104.0 and from 0.7 to 5.3%, respectively. The mean overall recovery across quality controls was ≥95% for the analyte and IS, while the interference of matrix expressed as IS‐normalized matrix factors ranged from 1.01 to 1.02. The method was successfully applied to support a bioequivalence study of 0.5 mg dutasteride capsules in 24 healthy subjects. Assay reproducibility was demonstrated by reanalysis of 103 incurred samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Bicyclol is a synthetic drug widely used to treat chronic hepatitis B. This study aimed to develop a selective, sensitive and high‐throughput liquid chromatography–tandem mass spectrometric method for the detection of bicyclol in human plasma. Bicyclol was detected using a multiple reaction monitoring mode, with ammonium adduct ions (m/z 408.2) as the precursor ion and the [M‐CH3]+ ion (m/z 373.1) subjected to demethylation as the product ion. Chromatographic separation was achieved using a Zobax Eclipse XDB‐C18 column with a gradient elution and a mobile phase of 2 mm ammonium formate and acetonitrile. Bicyclol was extracted from plasma matrix by precipitation. A linear detection response was obtained for bicyclol ranging from 0.500 to 240 ng/mL, and the lower limit of quantification was 0.500 ng/mL. The intra‐ and inter‐day precisions were all ≤7.4%, and the accuracies were within ±6.0%. The extraction recovery was >95.9%, and the matrix effects were between 96.0% and 108%. Bicyclol was found to be unstable in human plasma at room temperature, but the degradation was minimized by conducting sample collection and preparation in an ice bath. The validated method was successfully applied to investigate the pharmacokinetics of bicyclol tablets in six healthy Chinese volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号