首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 226 毫秒
1.
A bis(pyrazolylpyridyl) ligand, L, containing a central photochromic dithienylethene spacer predictably forms a ferrous [Fe2L3]4+ helicate exhibiting spin crossover (SCO). In solution, the compound [Fe2L3](ClO4)4 ( 1 ) preserves the magnetic properties and is fluorescent. The structure of 1 is photo‐switchable following the reversible ring closure/opening of the central dithienylethene via irradiation with UV/visible light. This photoisomerization switches on and off some emission bands of 1 and provides a means of externally manipulating the magnetic properties of the assembly.  相似文献   

2.
Three multi‐dentate 1, 2,4‐triazole derivative ligands containing different 4‐substituted groups, namely N‐1, 2,4‐triazol‐4‐yl(pyridin‐3‐yl)methylenimine (L1), N‐1, 2,4‐triazol‐ 4‐yl(pyridin‐4‐yl)methylenimine (L2), and 4‐(2‐pyridine)‐1, 2,4‐triazole (L3) were used to isolate five iron(II) and zinc(II) coordination frameworks, [Zn(μ2‐L1)Cl2] ( 1 ), [Zn(μ2‐L2)Br2] ( 2 ), [Fe(L1)2(NCS)2(H2O)2] ( 3 ), [Fe(L3)2(dca)2(H2O)2] ( 4 ), and [Fe(L3)22‐dca)] ( 5 ) (dca = dicyanamide anion). When different zinc(II) salts were used to react with L1 and L2 under solvothermal conditions, two one‐dimensional (1D) zinc(II) coordination frameworks 1 and 2 containing four‐coordinate central zinc(II) atoms were isolated. 1 is a 3D achiral supra‐molecular framework, whereas 2 is a 3D chiral supra‐molecular framework containing helical chains on a 21 axis. 3 is a mono‐nuclear iron(II) coordination framework containing six‐coordinate central FeII atoms. When L3 was employed, mono‐nuclear iron(II) framework 4 and 1D iron(II) chain 5 could be isolated when different amounts of Nadca were introduced into the reaction system. Variable‐temperature magnetic susceptibility data of 3 – 5 were recorded in the 2–300 K temperature range indicating weak anti‐ferromagnetic interactions. The solid‐state luminescent properties of coordination polymers 1 and 2 were also investigated at room temperature.  相似文献   

3.
Four cyanide-bridged heterometallic complexes {[CuPb(L 1 )][Fe III (bpb)(CN) 2 ]} 2 ·(ClO 4 ) 2 ·2H 2 O·2CH 3 CN (1), {[CuPb(L 1 )] 2 [Fe II (CN) 6 ](H 2 O) 2 }·10H 2 O (2), {[Cu 2 (L 2 )][Fe III (bpb)(CN) 2 ] 2 }·2H 2 O·2CH 3 OH (3) and {[Cu 2 (L 2 )] 3 [Fe III (CN) 6 ] 2 (H 2 O) 2 }·10H 2 O (4) have been synthesized by treating K[Fe III (bpb)(CN) 2 ] [bpb 2-=1,2-bis(pyridine-2-carboxamido)benzenate] and K 3 [Fe III (CN)] 6 with dinuclear compartmental macrocyclic Schiff-base complexes [CuPb(L 1 )] (ClO 4 ) 2 or [Cu 2 (L 2 )]·(ClO 4 ) 2 , in which H 2 L 1 was derived from 2,6-diformyl-4-methyl-phenol, ethylenediamine, and diethylenetriamine in the molar ratio of 2:1:1 and H 2 L 2 from 2,6-diformyl-4-methyl-phenol and propylenediamine in the molar ratio of 1:1. Single crystal X-ray diffraction analysis reveals that compound 1 displays a cyclic hexanuclear heterotrimetallic molecular structure with alternating [FeⅢ (bpb)(CN) 2 ]- and [CuPb(L 1 )] 2+ units. Complex 2 is of a neutral dumb-bell-type pentanuclear molecular configuration consisting of one [Fe(CN)6] 4- anion sandwiched in two [CuPu(L 1 )] 2+ cations, and the pentanuclear moieties are further connected by the hydrogen bonding to give a 2D supramolecular framework. Heterobimetallic complex 3 is a tetranuclear molecule composed of a centrosymmetric [Cu 2 (L2)] 2+ segment and two terminal cyanide-containing blocks [FeⅢ (bpb)(CN)2 ]- . Octanuclear compound 4 is built from two [Fe(CN)6]3- anions sandwiched in the three [Cu 2 L 2 ] 2+ cations. Investigation of their magnetic properties reveals the overall antiferromagnetic behavior in the series of complexes except 2.  相似文献   

4.
Trinuclear systems of formula [{Cr(LN3O2Ph)(CN)2}2M(H2LN3O2R)] (M=MnII and FeII, LN3O2R stands for pentadentate ligands) were prepared in order to assess the influence of the bending of the apical M−N≡C linkages on the magnetic anisotropy of the FeII derivatives and in turn on their Single-Molecule Magnet (SMM) behaviors. The cyanido-bridged [Cr2M] derivatives were obtained by assembling trans-dicyanido CrIII complex [Cr(LN3O2Ph)(CN)2] and divalent pentagonal bipyramid complexes [MII(H2LN3O2R)]2+ with various R substituents (R=NH2, cyclohexyl, S,S-mandelic) imparting different steric demand to the central moiety of the complexes. A comparative examination of the structural and magnetic properties showed an obvious effect of the deviation from straightness of the M−N≡C alignment on the slow relaxation of the magnetization exhibited by the [Cr2Fe] complexes. Theoretical calculations have highlighted important effects of the bending of the apical C−N−Fe linkages on both the magnetic anisotropy of the FeII center and the exchange interactions with the CrIII units.  相似文献   

5.
The absorption of Fe3+ ion from the aqueous phase to the solid phase was carried out by using p-tert-butyl calix[6]arene (L1), calix[6]arene (L2), p-tert-butyl calix[8]arene (L3), and calix[8]arene (L4). The effect of varying pH upon the absorption capability of parent calixarenes was examined. It was found that the compounds (L1, L2, L3, and L4) showed the highest extractability toward Fe3+ ion at 4.5–5.4. The calixarene L2 shows a strong binding ability to Fe3+ ion. Based on the continuous variation method, calixarene L2 formed 1:1 complex with Fe3+ ion.  相似文献   

6.
Complexation of FeII and FeIII with azaheterocyclic ligands L (L = phen or bipy) were studied in the presence and in the absence of boron cluster anions [BnHn]2– (n = 10, 12). The reactions were carried out in air at room temperature in organic solvents and/or water. In all the solvents used, well known [FeL3]An (An = 2Cl or SO42–) ferrous complexes were formed from FeII salts. Composition of ferric complexes with L ligands depends on the nature of solvent: either dinuclear oxo‐iron(III) chlorides [L2ClFeIII–O–FeIIIL2Cl]Cl2 or ferric ferrates(III) [FeIIIL2Cl2][FeIIICl4], or [FeIIIL2Cl2][FeIIICl4L] were isolated from FeIII salts. Introduction of the closo‐borate anions to a Fe3+(or Fe2+)/L/solv. mixture stabilizes ferrous cationic complexes [FeL3]2+ in all the solvents used: only ferrous [FeL3][BnHn] (n = 10, 12) complexes were isolated from all the reaction mixtures in the presence of boron cluster anions.  相似文献   

7.
The synthesis and crystal structure (100 K) of the title compound, [Fe(C10H11BrN3OS)2]NO3·H2O, is reported. The asymmetric unit consists of an octahedral [FeIII(HL)2]+ cation, where HL? is H-5-Br-thsa-Et or 5-bromosalicylaldehyde 4-ethylthiosemicarbazonate(1?) {systematic name: 4-bromo-2-[(4-ethylthiosemicarbazidoidene)methyl]phenolate}, a nitrate anion and a noncoordinated water molecule. Each HL? ligand binds via the thione S, the imine N and the phenolate O atom, resulting in an FeIIIS2N2O2 chromophore. The ligands are orientated in two perpendicular planes, with the O and S atoms in cis and the N atoms in trans positions. This [Fe(HL)2](anion)·H2O compound contains the first known cationic FeIII entity containing two salicylaldehyde thiosemicarbazone derivatives. The FeIII ion is in the high-spin state at 100 K. In addition, a comparative IR spectroscopic study of the free ligand and the ferric complex is presented, demonstrating that such an analysis provides a quick identification of the degree of deprotonation and the coordination mode of the ligand in this class of metal compounds. The variable-temperature magnetic susceptibility measurements (5–320 K) are consistent with the presence of a high-spin FeIII ion with a zero-field splitting D = 0.439 (1) cm?1.  相似文献   

8.
Five new mononuclear iron(II) tris‐ligand complexes, and four solvatomorphs, have been made from the azine‐substituted 1,2,4‐triazole ligands ( Lazine ): [FeII( Lpyridazine )3](BF4)2 ( 1 ), [FeII( Lpyrazine )3](BF4)2 ( 2 ), [FeII( Lpyridine )3](BF4)2 ( 3 ), [FeII( L2pyrimidine )3](BF4)2 ( 4 ), and [FeII( L4pyrimidine )3](BF4)2 ( 5 ). Single‐crystal XRD and solid‐state magnetometry reveal that all of them are low‐spin (LS) iron(II), except for solvatomorph 5 ?4 H2O. Evans method NMR studies in CD2Cl2, (CD3)2CO and CD3CN show that all are LS in these solvents, except 5 in CD2Cl2 (consistent with L4pyrimidine imposing the weakest field). Cyclic voltammetry in CH3CN vs. Ag/0.01 m AgNO3 reveals an, at best quasi‐reversible, FeIII/II redox process, with Epa increasing from 0.69 to 0.99 V as the azine changes: pyridine< pyridazine<2‐pyrimidine<4‐pyrimidine< pyrazine. The observed Epa values correlate linearly with the DFT calculated HOMO energies for the LS complexes.  相似文献   

9.
Mannich reaction of 2-Amino propanol, 2-tert-butyl-4-methylphenol, and formaldehyde in the ratio of 1:2:2 provides a new compound, N-(1-propanol)-N,N-bis(3-tert-butyl-5-methyl-2-hydroxybenxyl)amine (H3L), which has been characterized by X-ray crystallography and elemental analysis. In the presence of Et3N, the reaction of H3L and FeCl3·6H2O gives a dinuclear Fe(III) complex [Fe2L2] 1, which has been characterized by X-ray crystallography, magnetic measurement, and cyclic voltammetry. The value of μeff at room temperature (5.97 μB) is much less than the expected spin-only value (8.37 μB) of two high spin (hs) Fe3+ (S = 5/2) ions [μ = g[∑ZS(S + 1)]1/2], indicating there are strong coupling interactions between Fe3+ ions. The magnetic behavior of 1 denotes the occurrence of intramolecular antiferromagnetic interactions (J = −13.35 cm−1 ). CV of 1 reveals two reversible waves at 0.433 and 1.227 V versus AgCl/Ag, which can be ascribed to the successive redox coupling of FeIIFeII/FeIIIFeII and FeIIIFeII/FeIIIFeIII, respectively.  相似文献   

10.
To investigate the effect of the spacers of S-/O-bridged dipyridylamides on the structures of Co(II)/Zn(II) complexes, [Co(L1)(chda)]·1.5H2O (CP1), [Co(L2)(chda)] (CP2), [Zn(L1)(hip)]·DMA·2H2O (CP3), and [Zn(L2)(hip)]·2.8H2O (CP4) [L1 = N,N′-bis(pyridine-3-yl)thiophene-2,5-dicarboxamide, H2chda = trans-1,4-cyclohexanedicarboxylic acid, L2 = N,N′-bis(pyridine-3-yl)-4,4′-oxybis(benzoic) dicarboxamide, H2hip = 5-hydroxyisophthalic acid, DMA = N,N-dimethylacetamide], have been solvothermally synthesized. X-ray single-crystal diffraction shows that CP1 is a 2-D 3,5-connected network based on Co-L1 linear chains and (Co-chda)2 double chains. CP2 features a 1-D structure derived from 1-D wave-like (Co-chda)2 double chains decorated by terminal L2 ligands. CP3 and CP4 show wave-like (4,4) networks constructed by 1-D Zn-L1 zigzag and Zn-hip zigzag (for CP3)/linear (for CP4) chains. The effect of the spacers of S-/O-bridged dipyridylamides on the structures of the title complexes was discussed. Electrochemical behaviors of CP1CP2 and solid-state luminescent properties of CP3CP4 were studied. The luminescence investigations show that CP3 and CP4 are recycled fluorescent probes for environmentally relevant Fe3+ ions. The photocatalytic properties for the degradation of methylene blue (MB) under ultraviolet light irradiation of CP3CP4 and the recyclable materials after fluorescent sensing Fe3+ ions (named CP3@Fe3+ and CP4@Fe3+) have also been investigated.  相似文献   

11.
Two examples of heterometallic–organic frameworks (HMOFs) composed of dicarboxyl‐functionalized FeIII‐salen complexes and d10 metals (Zn, Cd), [Zn2(Fe‐L)22‐O)(H2O)2] ? 4 DMF ? 4 H2O ( 1 ) and [Cd2(Fe‐L)22‐O)(H2O)2] ? 2 DMF ? H2O ( 2 ) (H4L=1,2‐cyclohexanediamino‐N,N′‐bis(3‐methyl‐5‐carboxysalicylidene), have been synthesized and structurally characterized. In 1 and 2 , each square‐pyramidal FeIII atom is embedded in the [N2O2] pocket of an L4? anion, and these units are further bridged by a μ2‐O anion to give an (Fe‐L)22‐O) dimer. The two carboxylate groups of each L4? anion bridge ZnII or CdII atoms to afford a 3D porous HMOF. The gas sorption and magnetic properties of 1 and 2 have been studied. Remarkably, 1 and 2 show activity for the photocatalytic degradation of 2‐chlorophenol (2‐CP) under visible‐light irradiation, which, to the best of our knowledge, is the first time that this has been observed for FeIII‐salen‐based HMOFs.  相似文献   

12.
Complex formation of 2, 6‐bis(2′‐hydroxyphenyl)pyridine (H2Li) with Fe3+ and Cu2+ was investigated in a H2O/DMSO medium (mole fraction xDMSO = 0.2) by potentiometric and spectrophotometric methods. The pKa values of [H3Li]+ are 2.25, 10.51 and 14.0 (25 °C, 0.1 M KCl). The formation constants of [FeIII(Li)]+ and [CuII(Li)] (25 °C, 0.1 M KCl) are log β1 = 21.5 for Fe3+ and log β1 = 18.5 for Cu2+. The crystal structures of [Al(Li)2Na(EtOH)3], [Fe(Li)2Na(EtOH)3], and [Cu(Li)(py)]2 were investigated by single‐crystal X‐ray diffraction analyses. The FeIII and the AlIII compound are isotypic and crystallize in the monoclinic space group P21/n. Al‐compound (215 K): a = 12.599(3) Å, b = 16.653(3) Å, c = 17.525(4) Å, β = 100.27(3)°, Z = 4 for C40H40AlN2NaO7; Fe‐compound (293 K): a = 12.753(3) Å, b = 16.715(3) Å, c = 17.493(3) Å, β = 99.68(3)°, Z = 4 for C40H40FeN2NaO7. Both compounds contain a homoleptic, anionic bis‐complex [M(Li)2] of approximate D2 symmetry. The Cu compound crystallized as an uncharged, dinuclear and centrosymmetric [Cu(Li)(py)]2 complex in the monoclinic space group P21/n with (293 K) a = 13.386(3) Å, b = 9.368(2) Å, c = 14.656(3) Å, β = 100.65(3)°, Z = 2 for C44H32Cu2N4O4. The structural properties and in particular the possible influence of the ligand geometry on the stability of the metal complexes is discussed.  相似文献   

13.
Four new coordination compounds, [Cd(L1)2]n ( 1 ), [Mn(L1)2]n ( 2 ), [Zn(L1)(NA)] ( 3 ), and [Pb(L1)2(H2O)] ( 4 ) were obtained on the basis of the in‐situ ligand reactions of quinoline‐2‐carbonitrile (QCN) and NaN3 under solvothermal conditions. 1 and 2 are 1D isostructural chains, where the central metal atoms are six‐coordinate by six nitrogen atoms in a distorted octahedron. The cycloaddition reaction of QCN and NaN3 in the presence of hydrated ZnCl2 occur with the aid of the ancillary ligand nicotinic acid (NA), where NA not only provides an acidic environment but also serves as an ancillary ligand. The extended structure of 3 is a 1D ladder‐like polymer. Compound 4 is a mononuclear Pb2+ compound. All the compounds were structurally characterized by X‐ray crystallography and their luminescent properties were investigated in detail.  相似文献   

14.
Two cubane-type tetranuclear nickel(II) and copper(II) complexes, [Ni4(L1)4(CH3OH)4] (1) and [Cu4(L2)4]·H2O (2), where L1 and L2 are the dianionic forms of the tridentate Schiff bases 4-nitro-2-[(2-hydroxyethylimino)methyl]phenol (H2L1) and 5-methoxy-2-[(2-hydroxyethylimino)methyl]phenol (H2L2), respectively, have been synthesized and characterized by physicochemical methods and single-crystal X-ray diffraction. The magnetic properties of the complexes show the presence of ferromagnetic interactions for complex 1 and antiferromagnetic interactions for complex 2, mediated by hydroxyl bridges.  相似文献   

15.
Self-assembly FeII complexes of phenazine (Phen), quinoxaline (Qxn), and 4,4′-trimethylenedipyridine (Tmp) with tetrahedral building blocks of [HgII(XCN)4]2− (X=S or Se) formed six new high-dimensional frameworks with the general formula of [Fe(L)m][Hg(XCN)4]⋅solvents (L=Phen, m/X=2/S, 1 ; L=Qxn, m/X=2/S, 2 ; L=Qxn, m/X=1/S, 3 ; L=Qxn, m/X=1/Se, 3-Se ; L=Tmp, m/X=1/S, 4 ; and L=Tmp, m/X=1/Se, 4-Se ). 1 , 3 , and 3-Se show an intense sub-terahertz (sub-THz) absorbance of around 0.60 THz due to vibrations of the solvent molecules coordinated to the FeII ions and crystallization organic molecules. In addition, crystals of 1 , 4 , and 4-Se display low-frequency Raman scattering with exceptionally low values of 0.44, 0.51, and 0.53 THz, respectively. These results indicate that heavy metal FeII−HgII systems are promising platforms to construct sub-THz absorbers.  相似文献   

16.
N-heterocyclic carbene ligands with picolyl (L1H2Br2, L3H2Br2) and benzyl (L2H2Br2, L4H2Br2) linked biphenyl backbone were synthesized and characterized. Their palladium(II) complexes [PdL1]Br2 ( 1 ), [PdL2Br2] ( 2 ), [PdL3]Br2 ( 3 ), and [PdL4Br2] ( 4 ) were synthesized by direct method using Pd(OAc)2. All complexes ( 1 – 4 ) were characterized by CHN analysis, electrospray ionization-MS, nuclear magnetic resonance, and single-crystal X-ray diffraction. Molecular structures confirm the distorted square planar geometry around the Pd(II) center. All of them showed good catalytic activity in acylative Suzuki cross coupling of phenyl boronic acid with benzoyl chloride to afford benzophenone in good yields.  相似文献   

17.
The cyanide building block [FeIII(pzphen)(CN)4] and its four lanthanide complexes [{FeIII(pzphen)(CN)4}2LnIII(H2O)5(DMF)3] · (NO3) · 2(H2O) · (CH3CN) [Ln = Nd ( 1 ), Sm ( 2 ), DMF = dimethyl formamide] and [{FeIII(pzphen)(CN)4}2LnIII(NO3)(H2O)2(DMF)2](CH3CN) [Ln = Gd ( 3 ), Dy ( 4 )] were synthesized and structurally characterized by single‐crystal X‐ray diffraction. Compounds 1 and 2 are ionic salts with two [FeIII(pzphen)(CN)4] cations and one LnIII ion, but compounds 3 and 4 are cyano‐bridged FeIIILnIII heterometallic 3d‐4f complexes exhibiting a trinuclear structure in the same conditions. Magnetic studies show that compound 3 is antiferromagnetic between the central FeIII and GdIII atoms. Furthermore, the trinuclear cyano‐bridged FeIII2DyIII compound 4 displays no single‐molecular magnets (SMMs) behavior by the alternating current magnetic susceptibility measurements.  相似文献   

18.
The reaction of the aryl‐oxide ligand H2L [H2L = N,N‐bis(3, 5‐dimethyl‐2‐hydroxybenzyl)‐N‐(2‐pyridylmethyl)amine] with CuSO4 · 5H2O, CuCl2 · 2H2O, CuBr2, CdCl2 · 2.5H2O, and Cd(OAc)2 · 2H2O, respectively, under hydrothermal conditions gave the complexes [Cu(H2L1)2] · SO4 · 3CH3OH ( 1 ), [Cu2(H2L2)2Cl4] ( 2 ), [Cu2(H2L2)2Br4] ( 3 ), [Cd2(HL)2Cl2] ( 4 ), and [Cd2(L)2(CH3COOH)2] · H2L ( 5 ), where H2L1 [H2L1 = 2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenol] and H2L2 [H2L2 = 2‐(2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenoxy)‐4, 6‐dimethylphenol] were derived from the solvothermal in situ metal/ligand reactions. These complexes were characterized by IR spectroscopy, elementary analysis, and X‐ray diffraction. A low‐temperature magnetic susceptibility measurement for the solid sample of 2 revealed antiferromagnetic interactions between two central copper(II) atoms. The emission property studies for complexes 4 and 5 indicated strong luminescence emission.  相似文献   

19.
An unsymmetrical oxo-bridged diiron(III) complex [Fe2L2(μ-O)], {H2L?=?trans-N,N′-bis-(2hydroxy-1-naphthalidehydene)-cyclohexanediamine} has been synthesized and characterized by various physico-chemical techniques. In the complex, each deprotonated bi-anionic L2? serves as a terminal tetradentate ligand (N2O2) and coordinates to one Fe to form a [FeL]+ unit. Two [FeL]+ units are further linked by an oxo-bridge to construct the binuclear oxo-Fe species with intramolecular Fe–Fe separation of 3.38?Å. Variable-temperature magnetic susceptibility studies revealed a strong antiferromagnetic interaction between two iron centers with J of ?112?cm?1. The interaction of the complex with CT-DNA was studied by various spectroscopic and viscosity measurements, which indicated that the complex could interact with CT-DNA through intercalation. In addition, the complex is able to cleave pBR322 DNA in the presence of H2O2. Furthermore, the interaction of the compound with BSA was also investigated, which indicated that the complex could quench the intrinsic fluorescence of BSA by a static quenching mechanism.  相似文献   

20.
An iron(III)–catecholate complex [L1FeIII(DBC)] ( 2 ) and an iron(II)–o‐aminophenolate complex [L1FeII(HAP)] ( 3 ; where L1=tris(2‐pyridylthio)methanido anion, DBC=dianionic 3,5‐di‐tert‐butylcatecholate, and HAP=monoanionic 4,6‐di‐tert‐butyl‐2‐aminophenolate) have been synthesised from an iron(II)–acetonitrile complex [L1FeII(CH3CN)2](ClO4) ( 1 ). Complex 2 reacts with dioxygen to oxidatively cleave the aromatic C? C bond of DBC giving rise to selective extradiol cleavage products. Controlled chemical or electrochemical oxidation of 2 , on the other hand, forms an iron(III)–semiquinone radical complex [L1FeIII(SQ)](PF6) ( 2ox‐PF6 ; SQ=3,5‐di‐tert‐butylsemiquinonate). The iron(II)–o‐aminophenolate complex ( 3 ) reacts with dioxygen to afford an iron(III)–o‐iminosemiquinonato radical complex [L1FeIII(ISQ)](ClO4) ( 3ox‐ClO4 ; ISQ=4,6‐di‐tert‐butyl‐o‐iminobenzosemiquinonato radical) via an iron(III)–o‐amidophenolate intermediate species. Structural characterisations of 1 , 2 , 2ox and 3ox reveal the presence of a strong iron? carbon bonding interaction in all the complexes. The bond parameters of 2ox and 3ox clearly establish the radical nature of catecholate‐ and o‐aminophenolate‐derived ligand, respectively. The effect of iron? carbon bonding interaction on the dioxygen reactivity of biomimetic iron–catecholate and iron–o‐aminophenolate complexes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号