首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Targeted alpha-therapy (TAT) has great potential for treating a broad range of late-stage cancers by delivering a focused and lethal radiation dose to tumors. Actinium-225 (225Ac) is an emerging alpha emitter suitable for TAT; however, the availability of chelators for Ac remains limited to a small number of examples (DOTA and macropa). Herein, we report a new Ac macrocyclic chelator named ‘ crown’ , which binds quantitatively and rapidly (<10 min) to Ac at ambient temperature. We synthesized 225Ac- crown -αMSH, a peptide targeting the melanocortin 1 receptor (MC1R), specifically expressed in primary and metastatic melanoma. Biodistribution of 225Ac- crown -αMSH showed favorable tumor-to-background ratios at 2 h post injection in a preclinical model. In addition, we demonstrated dramatically different biodistrubution patterns of 225Ac- crown -αMSH when subjected to different latency times before injection. A combined quality control methodology involving HPLC, gamma spectroscopy and radioTLC is recommended.  相似文献   

2.
Actinium-225 and other alpha-particle-emitting radionuclides have shown high potential for cancer treatment. Reconstituted high-density lipoproteins (rHDL) specifically recognize the scavenger receptor B type I (SR-BI) overexpressed in several types of cancer cells. Furthermore, after rHDL-SR-BI recognition, the rHDL content is injected into the cell cytoplasm. This research aimed to prepare a targeted 225Ac-delivering nanosystem by encapsulating the radionuclide into rHDL nanoparticles. The synthesis of rHDL was performed in two steps using the microfluidic synthesis method for the subsequent encapsulation of 225Ac, previously complexed to a lipophilic molecule (225Ac-DOTA-benzene-p-SCN, CLog P = 3.42). The nanosystem (13 nm particle size) showed a radiochemical purity higher than 99% and stability in human serum. In vitro studies in HEP-G2 and PC-3 cancer cells (SR-BI positive) demonstrated that 225Ac was successfully internalized into the cytoplasm of cells, delivering high radiation doses to cell nuclei (107 Gy to PC-3 and 161 Gy to HEP-G2 nuclei at 24 h), resulting in a significant decrease in cell viability down to 3.22 ± 0.72% for the PC-3 and to 1.79 ± 0.23% for HEP-G2 at 192 h after 225Ac-rHDL treatment. After intratumoral 225Ac-rHDL administration in mice bearing HEP-G2 tumors, the biokinetic profile showed significant retention of radioactivity in the tumor masses (90.16 ± 2.52% of the injected activity), which generated ablative radiation doses (649 Gy/MBq). The results demonstrated adequate properties of rHDL as a stable carrier for selective deposition of 225Ac within cancer cells overexpressing SR-BI. The results obtained in this research justify further preclinical studies, designed to evaluate the therapeutic efficacy of the 225Ac-rHDL system for targeted alpha-particle therapy of tumors that overexpress the SR-BI receptor.  相似文献   

3.
Targeted alpha therapy is an emerging strategy for the treatment of disseminated cancer. [223Ra]RaCl2 is the only clinically approved alpha particle-emitting drug, and it is used to treat castrate-resistant prostate cancer bone metastases, to which [223Ra]Ra2+ localizes. To specifically direct [223Ra]Ra2+ to non-osseous disease sites, chelation and conjugation to a cancer-targeting moiety is necessary. Although previous efforts to stably chelate [223Ra]Ra2+ for this purpose have had limited success, here we report a biologically stable radiocomplex with the 18-membered macrocyclic chelator macropa. Quantitative labeling of macropa with [223Ra]Ra2+ was accomplished within 5 min at room temperature with a radiolabeling efficiency of >95%, representing a significant advancement over conventional chelators such as DOTA and EDTA, which were unable to completely complex [223Ra]Ra2+ under these conditions. [223Ra][Ra(macropa)] was highly stable in human serum and exhibited dramatically reduced bone and spleen uptake in mice in comparison to bone-targeted [223Ra]RaCl2, signifying that [223Ra][Ra(macropa)] remains intact in vivo. Upon conjugation of macropa to a single amino acid β-alanine as well as to the prostate-specific membrane antigen-targeting peptide DUPA, both constructs retained high affinity for 223Ra, complexing >95% of Ra2+ in solution. Furthermore, [223Ra][Ra(macropa-β-alanine)] was rapidly cleared from mice and showed low 223Ra bone absorption, indicating that this conjugate is stable under biological conditions. Unexpectedly, this stability was lost upon conjugation of macropa to DUPA, which suggests a role of targeting vectors in complex stability in vivo for this system. Nonetheless, our successful demonstration of efficient radiolabeling of the β-alanine conjugate with 223Ra and its subsequent stability in vivo establishes for the first time the possibility of delivering [223Ra]Ra2+ to metastases outside of the bone using functionalized chelators, marking a significant expansion of the therapeutic utility of this radiometal in the clinic.

The therapeutic alpha-emitter 223Ra can be stably complexed in vivo, creating opportunities for the development of targeted radiopharmaceutical agents with this radionuclide.  相似文献   

4.
Glypican-3 (GPC3) is expressed in 75% of hepatocellular carcinoma (HCC), but not normal liver, making it a promising HCC therapeutic target. GC33 is a full-length humanized monoclonal IgG1 specific to GPC3 that can localize to HCC in vivo. GC33 alone failed to demonstrate therapeutic efficacy when evaluated in patients with HCC; however, we posit that cytotoxic functionalization of the antibody with therapeutic radionuclides, may be warranted. Alpha particles, which are emitted by radioisotopes such as Actinium-225 (Ac-225) exhibit high linear energy transfer and short pathlength that, when targeted to tumors, can effectively kill cancer and limit bystander cytotoxicity. Macropa, an 18-member heterocyclic crown ether, can stably chelate Ac-225 at room temperature. Here, we synthesized and evaluated the efficacy of [225Ac]Ac–Macropa–GC33 in mice engrafted with the GPC3-expressing human liver cancer cell line HepG2. Following a pilot dose-finding study, mice (n = 10 per group) were treated with (1) PBS, (2) mass-equivalent unmodified GC33, (3) 18.5 kBq [225Ac]Ac–Macropa–IgG1 (isotype control), (4) 9.25 kBq [225Ac]Ac–Macropa–GC33, and (5) 18.5 kBq [225Ac]Ac–Macropa–GC33. While significant toxicity was observed in all groups receiving radioconjugates, the 9.25 kBq [225Ac]Ac–Macropa–GC33 group demonstrated a modest survival advantage compared to PBS (p = 0.0012) and 18.5 kBq [225Ac]Ac–IgG1 (p = 0.0412). Hematological analysis demonstrated a marked, rapid reduction in white blood cells in all radioconjugate-treated groups compared to the PBS and unmodified GC33 control groups. Our studies highlight a significant disadvantage of using directly-labeled biomolecules with long blood circulation times for TAT. Strategies to mitigate such treatment toxicity include dose fractionation, pretargeting, and using smaller targeting ligands.  相似文献   

5.
The benefits to intracellular drug delivery from nanomedicine have been limited by biological barriers and to some extent by targeting capability. We investigated a size‐controlled, dual tumor‐mitochondria‐targeted theranostic nanoplatform (Porphyrin‐PEG Nanocomplexes, PPNs). The maximum tumor accumulation (15.6 %ID g?1, 72 h p.i.) and ideal tumor‐to‐muscle ratio (16.6, 72 h p.i.) was achieved using an optimized PPN particle size of approximately 10 nm, as measured by using PET imaging tracing. The stable coordination of PPNs with 177Lu enables the integration of fluorescence imaging (FL) and photodynamic therapy (PDT) with positron emission tomography (PET) imaging and internal radiotherapy (RT). Furthermore, the efficient tumor and mitochondrial uptake of 177Lu‐PPNs greatly enhanced the efficacies of RT and/or PDT. This work developed a facile approach for the fabrication of tumor‐targeted multi‐modal nanotheranostic agents, which enables precision and radionuclide‐based combination tumor therapy.  相似文献   

6.
Novel 4‐hydroxyquinoline (4HQ) based tautomeric switches are reported. 4HQs equipped with coordinative side arms (8‐arylimino and 3‐piperidin‐1‐ylmethyl groups) were synthesized to access O or N‐selective chelation of Zn2+ and Cd2+ ions by 4HQ. In the case of the monodentate arylimino group, O chelation of metal ions induces concomitant switching of phenol tautomer to the keto form in nonpolar or aprotic media. This change is accompanied by selective and highly sensitive fluorometric sensing of Zn2+ ions. In the case of the bidentate 8‐(quinolin‐8‐ylimino)methyl side arm, NMR studies in CD3OD indicated that both Cd2+ and Zn2+ ions afford N chelation for 4HQ, coexisting with tautomeric switching from quinolin‐4(1H)‐one to quinolin‐4‐olate. In corroboration, UV/Vis‐monitored metal‐ion titrations in toluene and methanol implied similar structural changes. Additionally, fluorescence measurements indicated that the metal‐triggered tautomeric switching is associated with compound signaling properties. The results are supported by DFT calculations at the B3LYP 6‐31G* level. Several X‐ray structures of metal‐free and metal‐chelating 4HQ are presented to support the solution studies.  相似文献   

7.
In this study, trace amounts of aluminum in serum of dialysis patients were chelated with 2‐Amino‐3‐(1H‐imidazol‐4‐yl)propanoic acid (Histidine) and determined by electro‐thermal atomic absorption spectrometry (ETAAS). A fast and efficient method based on ionic liquid dispersive liquid‐liquid bio‐micro‐extraction (IL‐DLLBME) was developed for the determination of Al cation in human blood serum samples. In this work, a small amount of 1‐Hexyl‐3‐methylimmidazolum hexafluorophosphate ([HMIM] [PF6]) as an extractant solvent was dissolved in acetone as a dispersant solvent and then the binary solution was rapidly injected by a syringe into the serum containing Al3+,Which have already in‐vitro chelated by Histidine amino acid (Al‐His) at pH = 6.5. After separation, the settled IL‐phase was dissolved in ethanol up to 200 μL and 20 μL of samples injected into the ET‐AAS by auto‐sampler. Various parameters have been studied and optimized for 10 mL of sample. Under the optimum conditions, the enrichment factor (EF), limit of detection (LOD) and working range (peak area mode) were obtained 53, 15 ng L?1 and 0.05‐4.1 μg L?1 respectively. In vitro Al chelation showed that His can significantly decrease aluminum concentration in serum of dialysis patients. Validation of methodology was confirmed by standard reference material (SRM).  相似文献   

8.
The title compound, [CrRb(C2O4)2(H2O)2]n, obtained under hydrothermal conditions and investigated structurally at 100 K, is a three‐dimensional supramolecular isomer of the layered structure compound studied at room temperature. This novel polymer is built up from crosslinked heterobimetallic units. The linkage of alternating edge‐ and vertex‐shared RbO7(H2O)2 and CrO4(H2O)2 polyhedra running along three different directions gives a dense packing. The two independent ligands display two η4‐chelation modes and two conventional carboxylate bridges. However, the pentadentate ligand connects the CrIII and RbI ions through one O‐atom bridge, while the hexadentate ligand exhibits an additional η3‐chelation and two O‐atom bridges. Each coordinated water molecule forms an O‐atom bridge between the two metals. Moreover, in the absence of protonated ligands, these water molecules act as donors through their four H atoms in strong‐to‐weak hydrogen bonds. This results in zigzag chains of alternating oxalate and aqua ligands parallel to the twofold screw axis. The six double oxalates known to date containing an alkali and CrIII all present layered two‐dimensional structures. In the series, this supramolecular isomer is the first three‐dimensional framework.  相似文献   

9.
Type‐2 diabetes (T2D) is considered to be a potential threat on a global level. Recently, T2D has been listed as a misfolding disease, such as Alzheimer's and Parkinson's diseases. Human islet amyloid polypeptide (hIAPP) is a molecule cosecreted in pancreatic β cells and represents the main constituent of an aggregated amyloid found in individuals affected by T2D. The trace‐element serum level is significantly influenced during the development of diabetes. In particular, the dys‐homeostasis of Cu2+ ions may adversely affect the course of the disease. Conflicting results have been reported on the protective role played by complex species formed by Cu2+ ions with hIAPP or its peptide fragments in vitro. The histidine (His) residue at position 18 represents the main binding site for the metal ion, but contrasting results have been reported on other residues involved in metal‐ion coordination, in particular those toward the N or C terminus. Sequences that encompass regions 17–29 and 14–22 were used to discriminate between the two models of the hIAPP coordination mode. Due to poor solubility in water, poly(ethylene glycol) (PEG) derivatives were synthesized. A peptide fragment that encompasses the 17–29 region of rat amylin (rIAPP) in which the arginine residue at position 18 was substituted by a histidine residue was also obtained to assess that the PEG moiety does not alter the peptide secondary structure. The complex species formed by Cu2+ ions with Ac‐PEG‐hIAPP(17–29)‐NH2, Ac‐rIAPP(17–29)R18H‐NH2, and Ac‐PEG‐hIAPP(14–22)‐NH2 were studied by using potentiometric titrations coupled with spectroscopic methods (UV/Vis, circular dichroism, and EPR). The combined thermodynamic and spectroscopic approach allowed us to demonstrate that hIAPP is able to bind Cu2+ ions starting from the His18 imidazole nitrogen atom toward the N‐terminus domain. The stability constants of copper(II) complexes with Ac‐PEG‐hIAPP(14–22)‐NH2 were used to simulate the different experimental conditions under which aggregate formation and oxidative stress of hIAPP has been reported. Speciation unveils: 1) the protective role played by increased amounts of Cu2+ ions on the hIAPP fibrillary aggregation, 2) the effect of adventitious trace amounts of Cu2+ ions present in phosphate‐buffered saline (PBS), and 3) a reducing fluorogenic probe on H2O2 production attributed to the polypeptide alone.  相似文献   

10.
The synthesis of coordination polymers or metal–organic frameworks (MOFs) has attracted considerable interest owing to the interesting structures and potential applications of these compounds. It is still a challenge to predict the exact structures and compositions of the final products. A new one‐dimensional coordination polymer, catena‐poly[[[bis{1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐tetrazole‐κN3}zinc(II)]‐μ‐hexane‐1,6‐dicarboxylato‐κ4O1,O1′:O6,O6′] monohydrate], {[Zn(C6H8O4)(C9H8N6)2]·H2O}n, has been synthesized by the reaction of Zn(Ac)2 (Ac is acetate) with 1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐tetrazole (bimt) and adipic acid (H2adi) at room temperature. In the polymer, each ZnII ion exhibits an irregular octahedral ZnN2O4 coordination geometry and is coordinated by two N atoms from two symmetry‐related bimt ligands and four O atoms from two symmetry‐related dianionic adipate ligands. ZnII ions are connected by adipate ligands into a one‐dimensional chain which runs parallel to the c axis. The bimt ligands coordinate to the ZnII ions in a monodentate mode on both sides of the main chain. In the crystal, the one‐dimensional chains are further connected through N—H…O hydrogen bonds, leading to a three‐dimensional supramolecular architecture. In addition, the title polymer exhibits fluorescence, with emissions at 334 and 350 nm in the solid state at room temperature.  相似文献   

11.
The search for more biocompatible alternatives to Gd3+‐based MRI agents, and the interest in 52Mn for PET imaging call for ligands that form inert Mn2+ chelates. Given the labile nature of Mn2+, high inertness is challenging to achieve. The strongly preorganized structure of the 2,4‐pyridyl‐disubstituted bispidol ligand L1 endows its Mn2+ complex with exceptional kinetic inertness. Indeed, MnL1 did not show any dissociation for 140 days in the presence of 50 equiv. of Zn2+ (37 °C, pH 6), while recently reported potential MRI agents MnPyC3A and MnPC2A‐EA have dissociation half‐lives of 0.285 h and 54.4 h under similar conditions. In addition, the relaxivity of MnL1 (4.28 mm ?1 s?1 at 25 °C, 20 MHz) is remarkable for a monohydrated, small Mn2+ chelate. In vivo MRI experiments in mice and determination of the tissue Mn content evidence rapid renal clearance of MnL1. Additionally, L1 could be radiolabeled with 52Mn and the complex revealed good stability in biological media.  相似文献   

12.
The extensive development of radiopharmaceuticals towards early tumour detection and treatment has increased the demand for new ligands with higher tumour selectivity. Research has been done on the potential of the novel O,O′‐diethylethylenediamine‐N,N′‐di‐3‐propanoate ( L ) ligand as a radionuclide vehicle for tumour targeting. Under alkaline conditions, L hydrolyses and produces half ester ligand ( L' ) and diacid ligand ( L'' ), with characteristic donor atom array N,N,O. Ligand L was successfully labelled with 99mTc at pH = 9 by coordination with the octahedral fac‐[99mTc(CO)3(H2O)3]+ intermediate, forming the main radioproduct fac‐[99mTcL′(CO)3] (Tc1). The 99mTc complex showed a low lipophilic character (log P = 0.48) and low binding affinity to human serum albumin (2.51 ± 0.48%). In vitro stability studies in saline and human plasma, as well as challenge studies with cysteine and histidine, revealed high stability of the complex during 24 h. Biodistribution studies of Tc1 in female C57BL/6 mice bearing B16/F1 melanoma metastases showed significant tumour uptake: 9.81 ± 1.19%ID g?1 in the liver, 5.87 ± 0.54%ID g?1 in the lungs and 3.17 ± 0.33%ID g?1 in the ovary at 30 min post‐injection. Favourable physicochemical properties, satisfactory in vitro/in vivo stability and biodistribution profile in the experimental metastatic melanoma model indicate the possible application of the radiolabelled ligand in tumour diagnosis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The host–guest interactions of cationic (AcH+) and neutral (Ac) forms of the dye acridine with the macrocyclic host p‐sulfonatocalix[6]arene (SCX6) were investigated by using ground‐state absorption, steady‐state and time‐resolved fluorescence, and NMR measurements. The cationic form undergoes significant complexation with SCX6 (Keq=2.5×104 M ?1), causing a sharp decrease in the fluorescence intensity and severe quenching in the excited‐state lifetime of the dye. The strong binding of the AcH+ form of the dye with SCX6 is attributed to ion–ion interactions involving the sulfonato groups (SO3?) of SCX6 and the positively charged AcH+ at pH of approximately 4.3. Whereas, the neutral Ac form of the dye undergoes weak complexation with SCX6 (Keq=0.9×103 M ?1) and the binding constant is lowered by one order of magnitude compared with that of the SCX6–AcH+ system. The strong affinity of SCX6 to the protonated form leads to a large upward pKa shift (≈2 units) in the dye. In contrast, strong emission quenching upon SCX6 interaction and the regeneration of fluorescence intensity of the dye in the presence of Gd3+ through competitive binding have also been demonstrated.  相似文献   

14.
Room‐temperature sodium–sulfur (RT‐Na/S) batteries hold significant promise for large‐scale application because of low cost of both sodium and sulfur. However, the dissolution of polysulfides into the electrolyte limits practical application. Now, the design and testing of a new class of sulfur hosts as transition‐metal (Fe, Cu, and Ni) nanoclusters (ca. 1.2 nm) wreathed on hollow carbon nanospheres (S@M‐HC) for RT‐Na/S batteries is reported. A chemical couple between the metal nanoclusters and sulfur is hypothesized to assist in immobilization of sulfur and to enhance conductivity and activity. S@Fe‐HC exhibited an unprecedented reversible capacity of 394 mAh g?1 despite 1000 cycles at 100 mA g?1, together with a rate capability of 220 mAh g?1 at a high current density of 5 A g?1. DFT calculations underscore that these metal nanoclusters serve as electrocatalysts to rapidly reduce Na2S4 into short‐chain sulfides and thereby obviate the shuttle effect.  相似文献   

15.
A liquid chromatography–tandem mass spectrometric (LC‐MS/MS) method was developed and validated for the determination of GDC‐0152 in human plasma to support clinical development. The method consisted of a solid‐phase extraction for sample preparation and LC‐MS/MS analysis in the positive ion mode using TurboIonSprayTM for analysis. d7‐GDC‐0152 was used as the internal standard. A linear regression (weighted 1/concentration2) was used to fit calibration curves over the concentration range of 0.02–10.0 ng/mL for GDC‐0152. There were no endogenous interference components in the blank human plasma tested. The accuracy at the lower limit of quantitation was 99.3% with a precision (%CV) of 13.9%. For quality control samples at 0.0600, 2.00 and 8.00 ng/mL, the between‐run %CV was ≤8.64. Between‐run percentage accuracy ranged from 98.2 to 99.6%. GDC‐0152 was stable in human plasma for 363 days at ?20°C and for 659 days at ?70°C storage. GDC‐0152 was stable in human plasma at room temperature for up to 25 h and through three freeze–thaw cycles. In whole blood, GDC‐0152 was stable for 12 h at 4°C and at ambient temperature. This validated LC‐MS/MS method for determination of GDC‐0152 was used to support clinical studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Lysosomes of brain capillary endothelial cells are implicated in nicotine acetylcholine receptor (nAChR)‐mediated transcytosis and act as an enzymatic barrier for the transport of peptide ligands to the brain. A D ‐peptide ligand of nAChRs (termed DCDX), which binds to nAChRs with an IC50 value of 84.5 nM , was developed by retro–inverso isomerization. DCDX displayed exceptional stability in lysosomal homogenate and serum, and demonstrated significantly higher transcytosis efficiency in an in vitro blood–brain barrier monolayer compared with the parent L ‐peptide. When modified on liposomal surface, DCDX facilitated significant brain‐targeted delivery of liposomes. As a result, brain‐targeted delivery of DCDX modified liposomes enhanced therapeutic efficiency of encapsulated doxorubicin for glioblastoma. This study illustrates the importance of ligand stability in nAChRs‐mediated transcytosis, and paves the way for developing stable brain‐targeted entities.  相似文献   

17.
A bioelectrode containing immobilized catalase and peroxidase was built using a Clark‐type oxygen electrode. The bioelectrode responded to hydrogen peroxide (H2O2) as well as to acetaminophen (Ac). The sensitivity of the bioelectrode for H2O2 was 0.35 mM O2/mM H2O2 and for Ac it was 0.23–1.05 µM O2/µM Ac at pH 6.6 and 25 °C. The limit of detection of Ac varied from 12 to 44 µM. The half‐time of the bioelectrode response to hydrogen peroxide was 36 s. The modeling of the bioelectrode action was performed digitally at transition and steady‐state conditions using finite difference technique. The calculated half‐time of the bioelectrode response to hydrogen peroxide was 53 % larger and the steady‐state response 11 % less than experimentally determined. The response to Ac was 2–3 times smaller in comparison to the experimental values. The calculated response change correlated with the experimentally determined when the catalase and peroxidase concentrations in the biocatalytical membrane changed 3–4 orders of magnitude. The simulations of the bioelectrode response revealed that the bioelectrode acts in diffusion limiting conditions at almost all enzymes concentrations. The model appears to be promising for optimization of the bioelectrode response.  相似文献   

18.
11C, 18F and 123I fatty acids are used for myocardial imaging, and 99mTc‐labeled fatty acids are more desirable substitutes than other radiolabeled fatty acids. In the work reported, [99mTc]‐CpTT‐10‐oxo‐FPA ( 1c ), [99mTc]‐CpTT‐12‐oxo‐FPA ( 2c ), [99mTc]‐CpTT‐14‐oxo‐FPA ( 3c ) and [99mTc]‐CpTT‐16‐oxo‐FPA ( 4c ) were prepared with 60.76–70.92% of radiochemical yield and purity of more than 95%. These radiotracers ( 1c , 2c , 3c , 4c ) were chemically stable when incubated in Sprague Dawley rat serum for 3 h at 37 °C. Tissue distribution studies in female mice indicated that 2c had high initial heart uptake (8.84%ID g?1 at 1 min post‐injection) and 4c had long retention in the heart (1.45%ID g?1 at 30 min post‐injection). Metabolite analysis showed 4c could be metabolized to 5c via β‐oxidation with loss of two ? CH2? in the myocardium, the radiometabolite being excreted via urine. However, low heart uptake suggested that 4c cannot be used as a diagnostic imaging agent. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
In the title compound, [Ba{HOOC(C6H4)2CO2}2(H2O)2] or [Ba(C14H9O4)2(H2O)2], the Ba atoms are coordinated by nine O atoms, six from two 2′‐carboxy­biphenyl‐2‐carboxyl­ate (Hbpdc) ligands and three from three coordinated water mol­ecules, resulting in the formation of face‐sharing distorted monocapped square anti­prisms. The Hbpdc ligands bridge the Ba atoms to form a one‐dimensional helical polymer, with a Ba⋯Ba distance across the chain of 4.1386 (17) Å. Adjacent chains are parallel to each other. The two independent ligands are tetra­dentate and have the same coordination mode, exhibiting μ‐oxo bridges and η8‐chelation. The crystal structure is further stabilized by hydrogen bonds within each chain.  相似文献   

20.
Transition‐metal‐mediated metalation of an aromatic C?H bond that is adjacent to a tertiary phosphine group in arylphosphines via a four‐membered chelate ring was first discovered in 1968. Herein, we overcome a long‐standing problem with the ortho‐C?H activation of arylphosphines in a catalytic fashion. In particular, we developed a rhodium‐catalyzed ortho‐selective C?H borylation of various commercially available arylphosphines with B2pin2 through PIII‐chelation‐assisted C?H activation. This discovery is suggestive of a generic platform that could enable the late‐stage modification of readily accessible arylphosphines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号