首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
Ketamine, a phencyclidine derivative, is used for induction of anesthesia, as an anesthetic drug for short term surgical interventions and in subanesthetic doses for postoperative pain relief. Ketamine undergoes extensive hepatic first-pass metabolism. Enantioselective capillary electrophoresis with multiple isomer sulfated β-cyclodextrin as chiral selector was used to identify cytochrome P450 enzymes involved in hepatic ketamine and norketamine biotransformation in vitro. The N-demethylation of ketamine to norketamine and subsequently the biotransformation of norketamine to other metabolites were studied via analysis of alkaline extracts of in vitro incubations of racemic ketamine and racemic norketamine with nine recombinantly expressed human cytochrome P450 enzymes and human liver microsomes. Norketamine was formed by CYP3A4, CYP2C19, CYP2B6, CYP2A6, CYP2D6 and CYP2C9, whereas CYP2B6 and CYP2A6 were identified to be the only enzymes which enable the hydroxylation of norketamine. The latter two enzymes produced metabolic patterns similar to those found in incubations with human liver microsomes. The kinetic data of ketamine N-demethylation with CYP3A4 and CYP2B6 were best described with the Michaelis–Menten model and the Hill equation, respectively. This is the first study elucidating the individual enzymes responsible for hydroxylation of norketamine. The obtained data suggest that in vitro biotransformation of ketamine and norketamine is stereoselective.  相似文献   

3.
Cnidilin is an active natural furocoumarin ingredient originating from well‐known traditional Chinese medicine Radix Angelicae Dahuricae . In the present study, an efficient approach was developed for the screening and identification of cnidilin metabolites using ultra‐high‐performance liquid chromatography coupled to quadrupole time‐of‐flight mass spectrometry. In this approach, an on‐line data acquisition method multiple mass defect filter combined with dynamic background subtraction was developed to trace all probable metabolites. Based on this analytical strategy, a total of 24 metabolites of cnidilin were detected in human liver microsomal incubation samples and the metabolic pathways were proposed. The results indicated that oxidation was the main biotransformation route for cnidilin in human liver microsomes. In addition, the specific cytochrome P450 (CYP) enzymes involved in the metabolism of cnidilin were identified using chemical inhibition and CYP recombinant enzymes. The results showed that CYP1A2 and CYP3A4 might be the major enzymes involved in the metabolism of cnidilin in human liver microsomes. The relationship between cnidilin and the CYP450 enzymes could provide us a theoretical basis of the pharmacological mechanism.  相似文献   

4.
A specific ultra‐performance liquid chromatography tandem mass spectrometry method is described for the simultaneous determination of bupropion, metroprolol, midazolam, phenacetin, omeprazole and tolbutamide in rat plasma with diazepam as internal standard, which are the six probe drugs of the six cytochrome P450 isoforms CYP2B6, CYP2D6, CYP3A4, CYP1A2, CYP2C19 and CYP2C9. Plasma samples were protein precipitated with acetonitrile. The chromatographic separation was achieved using a UPLC® BEH C18 column (2.1 × 100 mm, 1.7 µm). The mobile phase consisted of acetonitrile and water (containing 0.1% formic acid) with gradient elution. The triple quadrupole mass spectrometric detection was operated by multiple reaction monitoring in positive electrospray ionization. The precisions were <13%, and the accuracy ranged from 93.3 to 110.4%. The extraction efficiency was >90.5%, and the matrix effects ranged from 84.3 to 114.2%. The calibration curves in plasma were linear in the range of 2–2000 ng/mL, with correlation coefficient (r2) >0.995. The method was successfully applied to pharmacokinetic studies of the six probe drugs of the six CYP450 isoforms and used to evaluate the effects of erlotinib on the activities of CYP2B6, CYP2D6, CYP3A4, CYP1A2, CYP2C19 and CYP2C9 in rats. Erlotinib may inhibit the activity of CYP2B6 and CYP3A4, and may induce CYP2C9 of rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
《Electroanalysis》2017,29(7):1674-1682
Human cytochrome CYP1A2 is one of the major hepatic cytochrome P450s involved in many drugs metabolism, and chemical carcinogens activation. The CYP1A2‐dsDNA interaction in situ evaluation using a DNA‐electrochemical biosensor and differential pulse voltammetry was investigated. A dsDNA‐electrochemical biosensor showed that CYP1A2 interacted with dsDNA causing conformational changes in the double helix chain and DNA oxidative damage. A preferential interaction between the dsDNA guanosine residues and CYP1A2 was found, as free guanine and 8‐oxoguanine, a DNA oxidative damage biomarker, oxidation peaks were detected. This was confirmed using guanine and adenine homopolynucleotides‐electrochemical biosensors. The CYP1A2‐dsDNA interaction and dsDNA conformation changes was also confirmed by UV‐Vis spectrophotometry.  相似文献   

6.
A sensitive and specific liquid chromatography tandem mass spectrometric (LC–MS/MS) method that enables the simultaneous quantification of probe substrates and metabolites of cytochrome P450 (CYP) enzymes was developed and validated. These substrates (metabolites)—coumarin (7-hydroxycoumarin), tolbutamide (4-hydroxytolbutamide), S-mephenytoin (4-hydroxymephenytoin), dextromethorphan (dextrorphan), and testosterone (6β-hydroxytestosterone)—were utilized as markers for the activities of the major human CYP enzymes CYP2A6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, respectively. Analytes were separated on Kinetex C18 column (2.1 × 50 mm, 5 μm) using a binary gradient mobile phase of 0.1% formic acid in water and 0.1% formic acid in acetonitrile. Metabolites were detected and quantified by MS using multiple reaction monitoring at m/z 163 → 107.2 for 7-hydroxycoumarin, m/z 235 → 150.1 for 4-hydroxymephenytoin, m/z 287 → 171 for 4-hydroxytolbutamide, m/z 258 → 157.1 for dextrorphan, m/z 305 → 269 for 6β-hydroxytestosterone, and m/z 237 → 194 for the internal standard. The assay exhibited good linearity over a range of 10–500 ng/mL with acceptable accuracy and precision criteria. As a proof of concept, the developed cocktail assay was successfully used to examine the potential impact of catechin on the activity of the major rat liver CYP enzymes.  相似文献   

7.
Artocarpin isolated from an agricultural plant Artocarpus communis has shows anti‐inflammation and anticancer activities. In this study, we utilized recombinant human UDP‐glucuronosyltransferasesupersomes (UGTs) and human liver microsomes to explore its inhibitory effect on UGTs and cytochrome p450 enzymes (CYPs). Chemical inhibition studies and screening assays with recombinant human CYPs were used to identify if CYP isoform is involved in artocarpin metabolism. Artocarpin showed strong inhibition against UGT1A3, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2B7, CYP2C8 and CYP3A4. In particular, artocarpin exhibited competitive inhibition against CYP3A4 and noncompetitive inhibition against UGT1A3 and UGT1A7. The half inhibition concentration values for CYP3A4, UGT1A3 and UGT1A7 were 4.67, 3.82 and 4.82 μm , and the inhibition kinetic parameters for them were 0.78, 2.67 and 3.14 μm , respectively. After artocarpin was incubated in human liver microsomes and determined by HPLC, we observed its main metabolites (M1 and M2). In addition, we proved that CYP2D6 played the key role in the biotransformation of artocarpin in human liver microsomes. The result of molecular docking further confirmed that artocarpin interacted with CYP2D6, CYP2C8 and CYP3A4 through hydrogen bonds. This study provided preliminary results for further research on artocarpin or artocarpin‐containing herbs.  相似文献   

8.
Complementary and alternative medicines (CAM) can affect the pharmacokinetics of anticancer drugs by interacting with the metabolizing enzyme cytochrome P450 (CYP) 3A4. To evaluate changes in the activity of CYP3A4 in patients, levels of 1‐hydroxymidazolam in plasma are often determined with liquid chromatography–quadrupole mass spectrometry (LC‐MS/MS). However, validated LC‐MS/MS methods to determine in vitro CYP3A4 inhibition in human liver microsomes are scarce and not optimized for evaluating CYP3A4 inhibition by CAM. The latter is necessary because CAM are often complex mixtures of numerous compounds that can interfere with the selective measurement of 1‐hydroxymidazolam. Therefore, the aim was to validate and optimize an LC‐MS/MS method for the adequate determination of CYP3A4 inhibition by CAM in human liver microsomes. After incubation of human liver microsomes with midazolam, liquid–liquid extraction with tert‐butyl methyl ether was applied and dried samples were reconstituted in 50% methanol. These samples were injected onto a reversed‐phase chromatography consisting of a Zorbax Extend‐C18 column (2.1 × 150 mm, 5.0 µm particle size), connected to a triple quadrupole mass spectrometer with electrospray ionization. The described LC‐MS/MS method was validated over linear range of 1.0–500 nm for 1‐hydroxymidazolam. The results revealed good inter‐assay accuracy (≥85% and ≤115%) and within‐day and between‐day precisions (coefficient of variation ≤ 4.43%). Furthermore, the applicability of this assay for the determination of CYP3A4 inhibition in complex matrix mixtures was successfully demonstrated in an in vitro experiment in which CYP3A4 inhibition by known CAM (β‐carotene, green tea, milk thistle and St. John's wort) was determined. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
m‐Nisoldipine, as a novel 1,4‐dihydropyridine calcium ion antagonist, was presented as a couple of enantiomers [(?), (+)‐m‐nisoldipine]. In this report, the in vitro metabolism of m‐nisoldipine enantiomers was investigated in rat liver microsomes (RLM) by the combination of two liquid chromatography mass spectrometric techniques for the first time. The metabolites were separated and assayed by ultra‐high performance liquid chromatography coupled to quadrupole time‐of‐flight mass spectrometry and further identified by comparison of their mass and chromatographic behaviors with reference substances. A total of 18 metabolites of (?)‐m‐nisoldipine and 16 metabolites of (+)‐m‐nisoldipine were detected, respectively, which demonstrated that (+)‐m‐nisoldipine is more metabolically stable than (?)‐m‐nisoldipine. In addition, the identified metabolic pathways of m‐nisoldipine enantiomers were involved in dehydrogenation, oxidation and ester hydrolysis. Afterwards, based on high‐performance liquid chromatography coupled to triple quadrupole linear ion trap mass spectrometry, various selective cytochrome P450 (CYP) enzyme inhibitors were employed to evaluate CYP isoforms. The results indicated that the inhibitors of CYP1A1/2, CYP2B1/2, 2D and 2C11 had no obvious inhibitory effects, yet the inhibitor of CYP 3A had a significant inhibitory effect on metabolism of m‐nisoldipine enantiomers. This showed that CYP 3A might primarily metabolize m‐nisoldipine in RLM. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A sensitive and high‐throughput LC‐MS/MS method was established and validated for the simultaneous quantification of seven probe substrate‐derived metabolites (cocktail assay) for assessing the in vitro inhibition of cytochrome P450 (CYP) enzymes in pooled human liver microsomes. The metabolites acetaminophen (CYP1A2), hydroxy‐bupropion (CYP2B6), n‐desethyl‐amodiaquine (CYP2C8), 4′‐hydroxy‐diclofenac (CYP2C9), 4′‐hydroxy‐mephenytoin (CYP2C19), dextrorphan (CYP2D6) and 1′‐hydroxy‐midazolam (CYP3A4/5), together with the internal standard verapamil, were eluted on an Agilent 1200 series liquid chromatograph in <7 min. All metabolites were detected by an Agilent 6410B tandem mass spectrometer. The concentration of each probe substrate was selected by substrate inhibition assay that reduced potential substrate interactions. CYP inhibition of seven well‐known inhibitors was confirmed by comparing a single probe substrate assay with cocktail assay. The IC50 values of these inhibitors determined on this cocktail assay were highly correlated (R2 > 0.99 for each individual probe substrate) with those on single assay. The method was selective and showed good accuracy (85.89–113.35%) and between‐day (RSD <13.95%) and within‐day (RSD <9.90%) precision. The sample incubation extracts were stable at 25 °C for 48 h and after three freeze–thaw cycles. This seven‐CYP inhibition cocktail assay significantly increased the efficiency of accurately assessing compounds’ potential inhibition of the seven major CYPs in drug development settings. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Cytochrome P450 enzymes are the predominant mediators of phase I metabolism of exogenous small molecules. As a result of their extensive role in metabolism of xenobiotics, drug compounds, and endogenous compounds, as well as their wide tissue distribution, significant drug discovery resources are spent to avoid interacting with this class of enzymes. Here we review historical and recent in silico modeling of 7 cytochrome P450 enzymes of particular interest, specifically CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4. For each we provide a brief biological background including known inhibitors, substrates, and inducers, as well as details of computational modeling efforts and advances in structural biology. We also provide similar details for 3 nuclear receptors known to regulate gene expression of these enzyme families.  相似文献   

12.
The major components, 1‐hydroxy‐2,3,5‐trimethoxy‐xanthone (HM‐1) and 1,5‐dihydroxy‐2,3‐dimethoxy‐xanthone (HM‐5) isolated from Halenia elliptica D. Don (Gentianaceae), could cause vasodilatation in rat coronary artery with different mechanisms. In this work, high‐performance liquid chromatography coupled to ion trap time‐of‐flight mass spectrometry (LCMS‐IT‐TOF) was used to clarify the metabolic pathways, and CYP450 isoform involvement of HM‐1 and HM‐5 were also studied in rat. At the same time, in vivo inhibition effects of HM‐1 and ethyl acetate extracts from origin herb were studied. Three metabolites of HM‐5 were found in rat liver microsomes (RLMs); demethylation and hydroxylation were the major phase I metabolic reactions for HM‐5. Multiple CYP450s were involved in metabolism of HM‐1 and HM‐5. The inhibition study showed that HM‐5 inhibited Cyp1a2, 2c6 and 2d2 in RLMs. HM‐1 inhibited activities of Cyp1a2, Cyp2c6 and Cyp3a2. In vivo experiment demonstrated that both HM‐1 and ethyl acetate extracts could inhibit Cyp3a2 in rats. In conclusion, the metabolism of xanthones from the origin herb involved multiple CYP450 isoforms; in vitro, metabolism of HM‐5 was similar to that of its parent drug HM‐1, but their inhibition effects upon CYP450s were different; in vivo, Cyp3a2 could be inhibited by HM‐1 and ethyl acetate extracts.  相似文献   

13.
trans-Resveratrol, a phenolic phytoalexin occurring in grapes, wine, peanuts, and cranberries, has been reported to both have anticarcinogenic, antioxidative, phytoestrogenic, and cardioprotective activities, and to be a weak inhibitor of cytochrome P450 (CYP)3A4, which might have significance for drug-drug interactions. Since trans-resveratrol is rapidly converted in vivo to primarily trans-resveratrol-3-sulfate, a rapid, selective, and sensitive method using liquid chromatography/tandem mass spectrometry (LC/MS/MS) was developed to investigate human cytochrome P450 inhibition by trans-resveratrol-3-sulfate. Effects of trans-resveratrol and trans-resveratrol-3-sulfate on the metabolism of selective cytochrome P450 substrates (CYP1A2/ethoxyresorufin, CYP2C9/diclofenac, CYP2C19/(S)-mephenytoin, CYP2D6/bufuralol, CYP3A4/testosterone) were monitored using cDNA-expressed human recombinant isozymes. For method validation, LC/MS/MS was used to measure the inhibition of various cytochrome P450 isozymes by different concentrations (0-50 microM) of known selective inhibitors. IC(50) values of 3.2, 1.4, 8.9, 0.2, and 0.3 microM were obtained for the standard isozyme inhibitors CYP1A2/furafylline, CYP2C9/sulfaphenazole, CYP2C19/tranylcypromine, CYP2D6/quinidine, and CYP3A4/ketoconazole, respectively, which were in good agreement with literature values. trans-Resveratrol showed IC(50) values of 11.6 microM for CYP2C19 and 1.1 microM for CYP3A4, but the IC(50) values exceeded 50 microM for all the other CYP isozymes, which indicated no inhibition. No enzyme inhibition was observed for trans-resveratrol-3-sulfate. Our results indicate that trans-resveratrol is a marginal inhibitor of CYP3A4 and a weak inhibitor of CYP2C19, but its major metabolite trans-resveratrol-3-sulfate is not an inhibitor of any of the cytochrome P450 isozymes investigated.  相似文献   

14.

The effect of ketoconazole on the biotransformation of amiodarone, rosiglitazone, and cyclophosphamide was studied using the human liver cell model based on differentiated HepaRG spheroids. The concentrations of major metabolites of amiodarone and cyclophosphamide were found to decrease in the presence of ketoconazole, a cytochrome P450 3A4 inhibitor. The concentration of the major metabolite of rosiglitazone, N-desmethyl rosiglitazone, decreased upon the addition of either sulfaphenazole, a cytochrome P450 2C9 inhibitor, or ketoconazole. The rosiglitazone metabolism involves CYP2C9 and CYP2C19. This result is attributable to the inhibitory effect of ketoconazole on p-glycoprotein, which decreases N-desmethyl rosiglitazone concentration in the culture medium. The utilization of the human liver cell model and selective inhibitors of transporters and cytochrome P450 isoforms can serve for standardization of the studies of drug-drug interactions involved in drug transport and metabolism.

  相似文献   

15.
Li  Xiaobin  Tang  Minghai  Wang  Hairong  Ma  Liang  Ye  Haoyu  Wang  Chunyu  Yang  Qiunan  Wan  Li  Chen  Lijuan 《Chromatographia》2016,79(21):1479-1490

F18, N-hydroxy-4-(2-methoxy-5-(methyl (2-methylquinazolin-4-yl) amino) phenoxy) butanamide, is a novel selective HDAC6 inhibitor with good antitumor activity. In the early drug development, drug-metabolism studies are a crucial and indispensable part. In this study, we proposed to evaluate the in vitro primary metabolism of F18 in phase Ι in liver microsomes from human, rat, dog, monkey and mouse and investigate the metabolite profile both in vitro and in vivo using LC–MS/MS methods. F18 showed high metabolic stability in human, rat, dog, monkey and mouse liver microsomes over 120 min, with t 1/2 >8 h in human, rat, and dog, and t 1/2 <3.5 h in monkey, with almost no clearance in mouse. Human cytochrome P450 (P450) phenotyping showed that F18 was predominantly metabolized by CYP2C9, CYP2E1, CYP2D6 and CYP3A4. The investigation of the effect of F18 on CYP enzymes in HLM demonstrated that this compound did not significantly inhibit CYP 1A2 (IC50 >100 μM), was a moderate inhibitor of CYP3A4 (IC50 = 1.63 μM) and had negligible effects on CYP3A1/2 activity in rats. The results will be valuable in understanding drug–drug interactions (DDI) when F18 is co-administered with other drugs. The metabolites of F18 were investigated in rat plasma, urine, feces and different liver microsomes in NADPH samples, yielding at least 11 metabolites in these biological samples. The prominent metabolic pathways were de-methylation, de-amination, de-oxidation and O-glucuronidation. In summary, this work provides the first clues regarding F18 metabolism, providing important information for comprehensive understanding of F18 metabolites.

  相似文献   

16.
Prost F  Thormann W 《Electrophoresis》2003,24(15):2577-2587
Capillary electrophoresis (CE) with multiwavelength absorbance detection is demonstrated to be an effective tool for the assessment of in vitro drug metabolism studies using microsomes containing single human cytochrome P450 enzymes (CYPs) expressed in baculovirus-infected insect cells (Supersomes). Mephenytoin (MEPH), dextromethorphan, diclofenac, caffeine, and methadone (MET) were successfully applied as test substrates for CYP2C19, CYP2D6*1, CYP2C9*1, CYP1A2, and CYP3A4, respectively. For each system, the CE-based assay could be shown to permit the simultaneous analysis of the parent drug and its targeted metabolite. Using a chiral micellar electrokinetic capillary chromatography assay, the aromatic hydroxylation of MEPH catalyzed by CYP2C19 could thereby be confirmed to be highly stereoselective, an aspect that is in agreement with data obtained via urinary analysis after intake of racemic MEPH by extensive metabolizer phenotypes. The MET to 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) conversion was investigated with a chiral zone electrophoresis assay. Incubation of racemic and nonracemic MET with CYP3A4 revealed no stereoselectivity for the transformation to EDDP, whereas no EDDP formation was observed with CYP1A2. CYP2C9 and CYP2C19 provided enhanced formation of R-EDDP and CYP2D6 incubation resulted in the preferential conversion to S-EDDP. Investigations using racemic MET and human liver microsomes revealed a modest stereoselectivity with an R/S EDDP ratio < 1 which is similar to the in vivo findings in urine.  相似文献   

17.
A sensitive and high‐throughput inhibition screening liquid chromatography–mass spectrometry (LC‐MS/MS) method was developed and validated for the simultaneous quantification of five probe metabolites (7‐hydroxycoumarin, CYP2A6; 4‐hydroxytolbutamide, CYP2C9; 4′‐hydroxymephenytoin, CYP2C19; α‐hydroxymetoprolol, CYP2D6; and 1‐hydroxymidazolam, CYP3A4) for in vitro cytochrome P450 activity determination in human liver microsome and recombinant. All the metabolites and the internal standard, tramadol, were separated on a Waters 2695 series liquid chromatograph with a Phenomenex Luna C18 column (150 × 2.0 mm, 5 µm). Quality control samples and a positive control CYP inhibitor were included in the method. The IC50 values determined for typical CYP inhibitors were reproducible and in agreement with the literature. The method was selective and showed good accuracy (99.13–103.37%), and inter‐day (RSD < 6.20%) and intra‐day (RSD < 6.13%) precision. Also, the incubation extracts of the sample were stable at room temperature (20 °C) for 48 h and for 96 h in the autosampler (4 °C). The presented method is the first HPLC‐MS/MS method of this combination for simultaneous detection of the five metabolites 7‐hydroxycoumarin, 4‐hydroxytolbutamide, 4′‐hydroxymephenytoin, α‐hydroxymetoprolol and 1‐hydroxymidazolam in a single‐run process. It is possible that the high‐quality and ‐throughput cocktail provides suitable information in drug discovery and screening for new drug entities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The cocktail approach is an advantageous strategy used to monitor the activities of several cytochromes P450 (CYPs) in a single test to increase the throughput of in vitro phenotyping studies. In this study, a cocktail mixture was developed with eight CYP-specific probe substrates to simultaneously evaluate the activity of the most important CYPs, namely, CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and the CYP3A subfamily. After cocktail incubation in the presence of human liver microsomes (HLMs), the eight selected substrates and their specific metabolites were analyzed by ultra-high-pressure liquid chromatography and electrospray ionization quadrupole time-of-flight mass spectrometry. Qualitative and quantitative data were simultaneously acquired to produce an overview of the extended phase I biotransformation routes for each probe substrate in the HLMs and to generate phenotypic profiles of various HLMs. A comparison of the cocktail strategy with an individual substrate assay for each CYP produced similar results. Moreover, the cocktail was tested on HLMs with different allelic variants and/or in the presence of selective inhibitors. The results were in agreement with the genetic polymorphisms of the CYPs and the expected effect of the alterations. All of these experiments confirmed the reliability of this cocktail assay for phenotyping of the microsomal CYPs.  相似文献   

19.
蒋华麟  谭相石 《化学进展》2009,21(5):911-918
由于人肝细胞色素P450 2C亚家族与临床药物代谢的密切关系,其研究已引起人们的广泛关注。本文综述了四种人肝细胞色素P450 2C,着重综述了其中的三种:CYP2C9,CYP2C8,CYP2C19的研究进展。评述了CYP2C9,CYP2C8和CYP2C19的某些氨基酸残基在催化过程中的作用,这三种酶的基因多态在不同人种中的分布及药物代谢的差异,以及它们与用药的特异性及某些疾病的易感性的联系,介绍了目前提出的CYP2C8的底物药效团模型,最后总结了CYP2C9,CYP2C8,CYP2C19,CYP2C18的主要特性。  相似文献   

20.
The human cytochrome P450 2B6 can metabolize a number of clinical drugs. Inhibition of CYP2B6 by coadministered multiple drugs may lead to drug–drug interactions and undesired drug toxicity. The aim of this investigation is to develop an in silico model to predict the interactions between P450 2B6 and novel inhibitors using a novel hierarchical support vector regression (HSVR) approach, which simultaneously takes into account the coverage of applicability domain (AD) and the level of predictivity. Thirty‐seven molecules were deliberately selected and rigorously scrutinized from the literature data, of which 26 and 11 molecules were treated as the training set and the test set to generate the models and to validate the generated models, respectively. The generated HSVR model gave rise to an r2 value of 0.97 for observed versus predicted pKm values for the training set, a q2 value of 0.93 by the 10‐fold cross‐validation, and an r2 value of 0.82 for the test set. Additionally, the predicted results show that the HSVR model outperformed the individual local models, the global model, and the consensus model. Thus, this HSVR model provides an accurate tool for the prediction of human cytochrome P450 2B6‐substrate interactions and can be utilized as a primary filter to eliminate the potential selective inhibitor of CYP2B6. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号