共查询到20条相似文献,搜索用时 15 毫秒
1.
Dr. Samy Cecioni Dr. Jean‐Pierre Praly Dr. Susan E. Matthews Dr. Michaela Wimmerová Dr. Anne Imberty Dr. Sébastien Vidal 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(20):6250-6263
The design of multivalent glycoclusters requires the conjugation of biologically relevant carbohydrate epitopes functionalized with linker arms to multivalent core scaffolds. The multigram‐scale syntheses of three structurally modified triethyleneglycol analogues that incorporate amide moiety(ies) and/or a phenyl ring offer convenient access to a series of carbohydrate probes with different water solubilities and rigidities. Evaluation of flexibility and determination of preferred conformations were performed by conformational analysis. Conjugation of the azido‐functionalized carbohydrates with tetra‐propargylated core scaffolds afforded a library of 18 tetravalent glycoclusters, in high yields, by CuI‐catalyzed azide–alkyne cycloaddition (CuAAC). The compounds were evaluated for their ability to bind to PA‐IL (the LecA lectin from the opportunistic pathogen Pseudomonas aeruginosa). Biochemical evaluation through inhibition of hemagglutination assays (HIA), enzyme‐linked lectin assays (ELLA), surface plasmon resonance (SPR), and isothermal titration microcalorimetry (ITC) revealed improved and unprecedented affinities for one of the monovalent probes (Kd=5.8 μM ) and also for a number of the tetravalent compounds that provide several new nanomolar ligands for this tetrameric lectin. 相似文献
2.
《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(1):99-117
Polyvalent carbohydrate–protein interactions occur frequently in biology, particularly in recognition events on cellular membranes. Collectively, they can be much stronger than corresponding monovalent interactions, rendering it difficult to control them with individual small molecules. Artificial macromolecules have been used as polyvalent ligands to inhibit polyvalent processes; however, both reproducible synthesis and appropriate characterization of such complex entities is demanding. Herein, we present an alternative concept avoiding conventional macromolecules. Small glycodendrimers which fulfill single molecule entity criteria self‐assemble to form non‐covalent nanoparticles. These particles—not the individual molecules—function as polyvalent ligands, efficiently inhibiting polyvalent processes both in vitro and in vivo. The synthesis and characterization of these glycodendrimers is described in detail. Furthermore, we report on the characterization of the non‐covalent nanoparticles formed and on their biological evaluation. 相似文献
3.
4.
Qing He Dr. Yu‐Fei Ao Prof. Zhi‐Tang Huang Prof. De‐Xian Wang 《Angewandte Chemie (International ed. in English)》2015,54(40):11785-11790
Anion–π interactions have been widely studied as new noncovalent driving forces in supramolecular chemistry. However, self‐assembly induced by anion–π interactions is still largely unexplored. Herein we report the formation of supramolecular amphiphiles through anion–π interactions, and the subsequent formation of self‐assembled vesicles in water. With the π receptor 1 as the host and anionic amphiphiles, such as sodium dodecylsulfate (SDS), sodium laurate (SLA), and sodium methyl dodecylphosphonate (SDP), as guests, the sequential formation of host–guest supramolecular amphiphiles and self‐assembled vesicles was demonstrated by SEM, TEM, DLS, and XRD techniques. The intrinsic anion–π interactions between 1 and the anionic amphiphiles were confirmed by crystal diffraction, HRMS analysis, and DFT calculations. Furthermore, the controlled disassembly of the vesicles was promoted by competing anions, such as NO3?, Cl?, and Br?, or by changing the pH value of the medium. 相似文献
5.
A carbohydrate–anion recognition system in nonpolar solvents is reported, in which complexes form at the B‐faces of β‐D ‐pyranosides with H1‐, H3‐, and H5‐cis patterns similar to carbohydrate–π interactions. The complexation effect was evaluated for a range of carbohydrate structures; it resulted in either 1:1 carbohydrate–anion complexes, or 1:2 complex formation depending on the protection pattern of the carbohydrate. The interaction was also evaluated with different anions and solvents. In both cases it resulted in significant binding differences. The results indicate that complexation originates from van der Waals interactions or weak CH ??? A? hydrogen bonds between the binding partners and is related to electron‐withdrawing groups of the carbohydrates as well as increased hydrogen‐bond‐accepting capability of the anions. 相似文献
6.
7.
Dr. Rafael Gramage‐Doria Joeri Hessels Stefan H. A. M. Leenders Dr. Oliver Tröppner Maximilian Dürr Prof. Dr. Ivana Ivanović‐Burmazović Prof. Dr. Joost N. H. Reek 《Angewandte Chemie (International ed. in English)》2014,53(49):13380-13384
Homogeneous transition‐metal catalysis is a crucial technology for the sustainable preparation of valuable chemicals. The catalyst concentration is usually kept as low as possible, typically at mM or μM levels, and the effect of high catalyst concentration is hardly exploited because of solubility issues and the inherent unfavorable catalyst/substrate ratio. Herein, a self‐assembly strategy is reported which leads to local catalyst concentrations ranging from 0.05 M to 1.1 M , inside well‐defined nanospheres, whilst the overall catalyst concentration in solution remains at the conventional mM levels. We disclose that only at this high concentration, the gold(I) chloride is reactive and shows high selectivity in intramolecular C? O and C? C bond‐forming cyclization reactions. 相似文献
8.
9.
Cristina Solera Dr. Giuseppe Macchione Dr. Susana Maza M. Mar Kayser Dr. Francisco Corzana Dr. José L. de Paz Dr. Pedro M. Nieto 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(7):2356-2369
The biological activity of midkine, a cytokine implicated in neuro‐ and tumourigenesis, is regulated by its binding to glycosaminoglycans (GAGs), such as heparin and chondroitin sulfate (CS). To better understand the molecular recognition of GAG sequences by this growth factor, the interactions between synthetic chondroitin sulfate‐like tetrasaccharides and midkine were studied by using different techniques. Firstly, a synthetic approach for the preparation of CS‐like oligosaccharides in the sequence GalNAc–GlcA was developed. A fluorescence polarisation competition assay was then employed to analyse the relative binding affinities of the synthetic compounds and revealed that midkine interacted with CS‐like tetrasaccharides in the micromolar range. The 3D structure of these tetramers was studied in detail by a combination of NMR spectroscopy experiments and molecular dynamics simulations. Saturation transfer difference (STD) NMR spectroscopy experiments indicate that the CS tetrasaccharides bind to midkine in an extended conformation, with similar saturation effects along the entire sugar chain. These results are compatible with docking studies that suggest an interaction of the tetrasaccharide with midkine in a folded structure. Overall, this study provides valuable information on the interaction between midkine and well‐defined, chemically synthesised CS oligosaccharides and these data can be useful for the design of more active compounds that modulate the biological function of this protein. 相似文献
10.
Hao Yao Miao Qi Prof. Dr. Yuyang Liu Prof. Dr. Wei Tian 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(25):8508-8519
Despite the remarkable progress made in controllable self‐assembly of stimuli‐responsive supramolecular polymers (SSPs), a basic issue that has not been consideration to date is the essential binding site. The noncovalent binding sites, which connect the building blocks and endow supramolecular polymers with their ability to respond to stimuli, are expected to strongly affect the self‐assembly of SSPs. Herein, the design and synthesis of a dual‐stimuli thermo‐ and photoresponsive Y‐shaped supramolecular polymer (SSP2) with two adjacent β‐cyclodextrin/azobenzene (β‐CD/Azo) binding sites, and another SSP (SSP1) with similar building blocks, but only one β‐CD/Azo binding site as a control, are described. Upon gradually increasing the polymer solution temperature or irradiating with UV light, SSP2 self‐assemblies with a higher binding‐site distribution density; exhibits a flower‐like morphology, smaller size, and more stable dynamic aggregation process; and greater controllability for drug‐release behavior than those observed with SSP1 self‐assemblies. The host–guest binding‐site‐tunable self‐assembly was attributed to the positive cooperativity generated among adjacent binding sites on the surfaces of SSP2 self‐assemblies. This work is beneficial for precisely controlling the structural parameters and controlled release function of SSP self‐assemblies. 相似文献
11.
Selective Interaction of Dopamine with the Self‐Assembled Fibrillar Network of a Molecular Hydrogel Revealed by STD‐NMR 下载免费PDF全文
Dr. María D. Segarra‐Maset Dr. Beatriu Escuder Dr. Juan F. Miravet 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(40):13925-13929
A molecular hydrogel formed by a derivative of L ‐valine with pendant isonicotinoyl moieties interacts selectively with protonated dopamine in the presence of related compounds such as 3‐methylcatechol, and protonated or neutral phenethylamine. A two‐point interaction with the gel fibers is postulated to explain the results. The conclusions are obtained from nuclear magnetic resonance saturation transfer experiments (STD‐NMR), illustrating how this technique is perfectly suited to monitor the interaction of substrates with the fibrillar network of a molecular gel. 相似文献
12.
Xiaomin Qian Dr. Weitao Gong Dr. Xiaopeng Li Le Fang Xiaojun Kuang Prof. Guiling Ning 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(20):6881-6890
A new host molecule consists of four terpyridine groups as the binding sites with zinc(II) ion and a copillar[5]arene incorporated in the center as a spacer to interact with guest molecule was designed and synthesized. Due to the 120 ° angle of the rigid aromatic segment, a cross‐linked dimeric hexagonal supramolecular polymer was therefore generated as the result of the orthogonal self‐assembly of metal–ligand coordination and host–guest interaction. UV/Vis spectroscopy, 1H NMR spectroscopy, viscosity and dynamic light‐scattering techniques were employed to characterize and understand the cross‐linking process with the introduction of zinc(II) ion and guest molecule. More importantly, well‐defined morphology of the self‐assembled supramolecular structure can be tuned by altering the adding sequence of the two components, that is, the zinc(II) ion and the guest molecule. In addition, introduction of a competitive ligand suggested the dynamic nature of the supramolecular structure. 相似文献
13.
Carmen Stoffelen Dr. Jens Voskuhl Prof. Dr. Pascal Jonkheijm Prof. Dr. Jurriaan Huskens 《Angewandte Chemie (International ed. in English)》2014,53(13):3400-3404
Supramolecular nanoparticles (SNPs) encompass multiple copies of different building blocks brought together by specific noncovalent interactions. The inherently multivalent nature of these systems allows control of their size as well as their assembly and disassembly, thus promising potential as biomedical delivery vehicles. Here, dual responsive SNPs have been based on the ternary host–guest complexation between cucurbit[8]uril (CB[8]), a methyl viologen (MV) polymer, and mono‐ and multivalent azobenzene (Azo) functionalized molecules. UV switching of the Azo groups led to fast disruption of the ternary complexes, but to a relatively slow disintegration of the SNPs. Alternating UV and Vis photoisomerization of the Azo groups led to fully reversible SNP disassembly and reassembly. SNPs were only formed with the Azo moieties in the trans and the MV units in the oxidized states, respectively, thus constituting a supramolecular AND logic gate. 相似文献
14.
Free‐Standing Gold‐Nanoparticle Monolayer Film Fabricated by Protein Self‐Assembly of α‐Synuclein 下载免费PDF全文
Junghee Lee Dr. Ghibom Bhak Dr. Ji‐Hye Lee Woohyun Park Minwoo Lee Dr. Daekyun Lee Prof. Noo Li Jeon Prof. Dae H. Jeong Prof. Kookheon Char Prof. Seung R. Paik 《Angewandte Chemie (International ed. in English)》2015,54(15):4571-4576
Free‐standing nanoparticle films are of great importance for developing future nano‐electronic devices. We introduce a protein‐based fabrication strategy of free‐standing nanoparticle monolayer films. α‐Synuclein, an amyloidogenic protein, was utilized to yield a tightly packed gold‐nanoparticle monolayer film interconnected by protein β‐sheet interactions. Owing to the stable protein–protein interaction, the film was successfully expanded to a 4‐inch diameter sheet, which has not been achieved with any other free‐standing nanoparticle monolayers. The film was flexible in solution, so it formed a conformal contact, surrounding even microspheres. Additionally, the monolayer film was readily patterned at micrometer‐scale and thus unprecedented double‐component nanoparticle films were fabricated. Therefore, the free‐floating gold‐nanoparticle monolayer sheets with these properties could make the film useful for the development of bio‐integrated nano‐devices and high‐performance sensors. 相似文献
15.
Stepwise Halide‐Triggered Double and Triple Catenation of Self‐Assembled Coordination Cages 下载免费PDF全文
Rongmei Zhu Jens Lübben Priv.‐Doz. Dr. Birger Dittrich Prof. Dr. Guido H. Clever 《Angewandte Chemie (International ed. in English)》2015,54(9):2796-2800
A simple self‐assembled [Pd2 L 4] coordination cage consisting of four carbazole‐based ligands was found to dimerize into the interpenetrated double cage [3 X@Pd4 L 8] upon the addition of 1.5 equivalents of halide anions (X=Cl?, Br?). The halide anions serve as templates, as they are sandwiched by four PdII cations and occupy the three pockets of the entangled cage structure. The subsequent addition of larger amounts of the same halide triggers another structural conversion, now yielding a triply catenated link structure in which each PdII node is trans‐coordinated by two pyridine donors and two halide ligands. This simple system demonstrates how molecular complexity can increase upon a gradual change of the relative concentrations of reaction partners that are able to serve different structural roles. 相似文献
16.
Hiroaki Kitagishi Dr. Yasuaki Kakikura Hiroyasu Yamaguchi Dr. Koji Oohora Akira Harada Prof. Dr. Takashi Hayashi Prof. Dr. 《Angewandte Chemie (International ed. in English)》2009,48(7):1271-1274
Supramolecular protein polymers : When a heme moiety was introduced to the surface of an apo‐cytochrome b562(H63C) mutant, supramolecular polymers formed through noncovalent heme–heme pocket interactions. The incorporation of a heme triad as a pivot molecule in the protein polymer further led to a two‐dimensional protein network structure, which was visualized by tapping‐mode atomic force microscopy (see picture).
17.
Peiyi Wang Dr. Jun Hu Prof. Song Yang Prof. Baoan Song Prof. Qian Wang 《化学:亚洲杂志》2014,9(10):2880-2884
The mixing of a polyacid cross‐linker with a pyridinium‐functionalized anthracene amphiphile afforded a supramolecular hydrogel through a self‐assembly process that was primarily driven by π‐stacking and electrostatic interactions. 相似文献
18.
Gerald Platzer Moriz Mayer Andreas Beier Sven Brüschweiler Julian E. Fuchs Harald Engelhardt Leonhard Geist Gerd Bader Julia Schrghuber Roman Lichtenecker Bernhard Wolkerstorfer Dirk Kessler Darryl B. McConnell Robert Konrat 《Angewandte Chemie (International ed. in English)》2020,59(35):14861-14868
While CH–π interactions with target proteins are crucial determinants for the affinity of arguably every drug molecule, no method exists to directly measure the strength of individual CH–π interactions in drug–protein complexes. Herein, we present a fast and reliable methodology called PI (π interactions) by NMR, which can differentiate the strength of protein–ligand CH–π interactions in solution. By combining selective amino‐acid side‐chain labeling with 1H‐13C NMR, we are able to identify specific protein protons of side‐chains engaged in CH–π interactions with aromatic ring systems of a ligand, based solely on 1H chemical‐shift values of the interacting protein aromatic ring protons. The information encoded in the chemical shifts induced by such interactions serves as a proxy for the strength of each individual CH–π interaction. PI by NMR changes the paradigm by which chemists can optimize the potency of drug candidates: direct determination of individual π interactions rather than averaged measures of all interactions. 相似文献
19.
Dr. Krishnananda Samanta Martin Ehlers Prof. Dr. Carsten Schmuck 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(43):15242-15247
Two‐component self‐assembly is a promising approach to construct functional nanomaterials. Interaction of a flexible guanidiniocarbonyl pyrrole tetra‐cation ( 1 ) with naphthalene diimide dicarboxylic acid (NDIDC) in aqueous DMSO leads to the formation of supramolecular networks. First, the carboxylate groups of NDIDC bind to the guanidiniocarbonyl pyrrole cations of 1 in a 1:2 stoichiometry. Further π–π induced aggregation then leads to 3D networks, as established by dynamic light scattering studies (DLS), NMR, fluorescence titration, viscosity measurements, AFM, and TEM microscopy. Due to ion pairing, the resulting aggregates can be switched between the monomers and the aggregates reversibly using external stimuli like protonation or deprotonation. At high concentration, a stable colloidal solution is formed, which shows an extensive Tyndall effect. Increasing the concentrations even further leads to formation of a supramolecular gel. 相似文献
20.
Desymmetrization of an Octahedral Coordination Complex Inside a Self‐Assembled Exoskeleton 下载免费PDF全文
Dr. Mark D. Johnstone Eike K. Schwarze Jennifer Ahrens Prof. Dr. Dirk Schwarzer Dr. Julian J. Holstein Dr. Birger Dittrich Dr. Frederick M. Pfeffer Prof. Dr. Guido H. Clever 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(31):10791-10795
The synthesis of a centrally functionalized, ribbon‐shaped [6]polynorbornane ligand L that self‐assembles with PdII cations into a {Pd2 L 4} coordination cage is reported. The shape‐persistent {Pd2 L 4} cage contains two axial cationic centers and an array of four equatorial H‐bond donors pointing directly towards the center of the cavity. This precisely defined supramolecular environment is complementary to the geometry of classic octahedral complexes [M(XY)6] with six diatomic ligands. Very strong binding of [Pt(CN)6]2? to the cage was observed, with the structure of the host–guest complex {[Pt(CN)6]@Pd2L4} supported by NMR spectroscopy, MS, and X‐ray data. The self‐assembled shell imprints its geometry on the encapsulated guest, and desymmetrization of the octahedral platinum species by the influence of the D4h‐symmetric second coordination sphere was evidenced by IR spectroscopy. [Fe(CN)6]3? and square‐planar [Pt(CN)4]2? were strongly bound. Smaller octahedral anions such as [SiF6]2?, neutral carbonyl complexes ([M(CO)6]; M=Cr, Mo, W) and the linear [Ag(CN)2]? anion were only weakly bound, showing that both size and charge match are key factors for high‐affinity binding. 相似文献