首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct spectroscopic evidence for hydrogen‐bonded clusters of like‐charged ions is reported for ionic liquids. The measured infrared O?H vibrational bands of the hydroxyethyl groups in the cations can be assigned to the dispersion‐corrected DFT calculated frequencies of linear and cyclic clusters. Compensating the like‐charge Coulomb repulsion, these cationic clusters can range up to cyclic tetramers resembling molecular clusters of water and alcohols. These ionic clusters are mainly present at low temperature and show strong cooperative effects in hydrogen bonding. DFT‐D3 calculations of the pure multiply charged clusters suggest that the attractive hydrogen bonds can compete with repulsive Coulomb forces.  相似文献   

2.
Potential applications of ionic liquids depend on the properties of this class of liquid material. To a large extent the structure and properties of these Coulomb systems are determined by the intermolecular interactions among anions and cations. In particular the subtle balance between Coulomb forces, hydrogen bonds and dispersion forces is of great importance for the understanding of ionic liquids. The purpose of the present paper is to answer three questions: Do hydrogen bonds exist in these Coulomb fluids? To what extent do hydrogen bonds contribute to the overall interaction between anions and cations? And finally, are hydrogen bonds important for the physical properties of ionic liquids? All these questions are addressed by using a suitable combination of experimental and theoretical methods including newly synthesized imidazolium-based ionic liquids, far infrared spectroscopy, terahertz spectroscopy, DFT calculations, differential scanning calorimetry (DSC), viscometry and quartz-crystal-microbalance measurements. The key statement is that although ionic liquids consist solely of anions and cations and Coulomb forces are the dominating interaction, local and directional interaction such as hydrogen bonding has significant influence on the structure and properties of ionic liquids. This is demonstrated for the case of melting points, viscosities and enthalpies of vaporization. As a consequence, a variety of important properties can be tuned towards a larger working temperature range, finally expanding the range of potential applications.  相似文献   

3.
The properties of ionic liquids are determined by the energy‐balance between Coulomb‐interaction, hydrogen‐bonding, and dispersion forces. Out of a set of protic ionic liquids (PILs), including trialkylammonium cations and methylsulfonate and triflate anions we could detect the transfer from hydrogen‐bonding to dispersion‐dominated interaction between cation and anion in the PIL [(C6H13)3NH][CF3SO3]. The characteristic vibrational features for both ion‐pair species can be detected and assigned in the far‐infrared spectra. Our approach gives direct access to the relative strength of hydrogen‐bonding and dispersion forces in a Coulomb‐dominated system. Dispersion‐corrected density functional theory (DFT) calculations support the experimental findings. The dispersion forces could be quantified to contribute about 2.3 kJ mol?1 per additional methylene group in the alkyl chains of the ammonium cation.  相似文献   

4.
Ten [C8C1Im]+ (1‐methyl‐3‐octylimidazolium)‐based ionic liquids with anions Cl?, Br?, I?, [NO3]?, [BF4]?, [TfO]?, [PF6]?, [Tf2N]?, [Pf2N]?, and [FAP]? (TfO=trifluoromethylsulfonate, Tf2N=bis(trifluoromethylsulfonyl)imide, Pf2N=bis(pentafluoroethylsulfonyl)imide, FAP=tris(pentafluoroethyl)trifluorophosphate) and two [C8C1C1Im]+ (1,2‐dimethyl‐3‐octylimidazolium)‐based ionic liquids with anions Br? and [Tf2N]? were investigated by using X‐ray photoelectron spectroscopy (XPS), NMR spectroscopy and theoretical calculations. While 1H NMR spectroscopy is found to probe very specifically the strongest hydrogen‐bond interaction between the hydrogen attached to the C2 position and the anion, a comparative XPS study provides first direct experimental evidence for cation–anion charge‐transfer phenomena in ionic liquids as a function of the ionic liquid’s anion. These charge‐transfer effects are found to be surprisingly similar for [C8C1Im]+ and [C8C1C1Im]+ salts of the same anion, which in combination with theoretical calculations leads to the conclusion that hydrogen bonding and charge transfer occur independently from each other, but are both more pronounced for small and more strongly coordinating anions, and are greatly reduced in the case of large and weakly coordinating anions.  相似文献   

5.
Cyclic octamers are well-known structural motifs in chemistry, biology and physics. These include covalently bound cyclic octameric sulphur, cylic octa-alkanes, cyclo-octameric peptides as well as hydrogen-bonded ring clusters of alcohols. In this work, we show that even calculated cyclic octamers of hydroxy-functionalized pyridinium cations with a net charge Q=+8e are kinetically stable. Eight positively charged cations are kept together by hydrogen bonding despite the strong Coulomb repulsive forces. Sufficiently long hydroxy-octyl chains prevent “Coulomb explosion” by increasing the distance between the positive charges at the pyridinium rings, reducing the Coulomb repulsion and thus strengthen hydrogen bonds between the OH groups. The eightfold positively charged cyclic octamer shows spectroscopic properties similar to those obtained for hydrogen-bonded neutral cyclic octamers of methanol. Thus, the area of the hydrogen bonded OH ring represents a ‘molecular island’ within an overall cationic environment. Although not observable, the spectroscopic properties and the correlated NBO parameters of the calculated cationic octamer support the detection of smaller cationic clusters in ionic liquids, which we observed despite the competition with ion pairs wherein attractive Coulomb forces enhance hydrogen bonding between cation and anion.  相似文献   

6.
We characterize the double‐faced nature of hydrogen bonding in hydroxy‐functionalized ionic liquids by means of neutron diffraction with isotopic substitution (NDIS), molecular dynamics (MD) simulations, and quantum chemical calculations. NDIS data are fit using the empirical potential structure refinement technique (EPSR) to elucidate the nearest neighbor H???O and O???O pair distribution functions for hydrogen bonds between ions of opposite charge and the same charge. Despite the presence of repulsive Coulomb forces, the cation–cation interaction is stronger than the cation–anion interaction. We compare the hydrogen‐bond geometries of both “doubly charged hydrogen bonds” with those reported for molecular liquids, such as water and alcohols. In combination, the NDIS measurements and MD simulations reveal the subtle balance between the two types of hydrogen bonds: The small transition enthalpy suggests that the elusive like‐charge attraction is almost competitive with conventional ion‐pair formation.  相似文献   

7.
We present deuteron quadrupole coupling constants (DQCC) for hydroxyl‐functionalized ionic liquids (ILs) in the crystalline or glassy states characterizing two types of hydrogen bonding: The regular Coulomb‐enhanced hydrogen bonds between cation and anion (c–a), and the unusual hydrogen bonds between cation and cation (c–c), which are present despite repulsive Coulomb forces. We measure these sensitive probes of hydrogen bonding by means of solid‐state NMR spectroscopy. The DQCCs of (c–a) ion pairs and (c–c) H‐bonds are compared to those of salt bridges in supramolecular complexes and those present in molecular liquids. At low temperatures, the (c–c) species successfully compete with the (c–a) ion pairs and dominate the cluster populations. Equilibrium constants obtained from molecular‐dynamics (MD) simulations show van't Hoff behavior with small transition enthalpies between the differently H‐bonded species. We show that cationic‐cluster formation prevents these ILs from crystallizing. With cooling, the (c–c) hydrogen bonds persist, resulting in supercooling and glass formation.  相似文献   

8.
In this work, the geometrical and electronic properties of the mono cationic ionic liquid 1‐hexyl‐3‐methylimidazolium halides ([C6(mim)]+_X?, X=Cl, Br and I) and dicationic ionic liquid 1,3‐bis[3‐methylimidazolium‐1‐yl]hexane halides ([C6(mim)2X2], X=Cl, Br and I) were studied using the density functional theory (DFT). The most stable conformer of these two types ionic liquids (IL) are determined and compared with each other. Results show that in the most stable conformers, in both monocationic ILs and dicationic ILs, the Cl? and Br? anions prefer to locate almost in the plane of the imidazolium ring whereas the I? anion prefers nearly vertical location respect to the imidazolium ring plan. Comparison of hydrogen bonding and ionic interactions in these two types of ionic liquids reveals that these ionic liquids can be formed hydrogen bond by Cl? and Br? anion. The calculated thermodynamic functions show that the interaction of cation — anion pair in the dicationic ionic liquids are more than monocationic ionic liquids and these interactions decrease with increasing the halide anion atomic weight.  相似文献   

9.
The paradigm of supramolecular chemistry relies on the delicate balance of noncovalent forces. Here we present a systematic approach for controlling the structural versatility of halide salts by the nature of hydrogen bonding interactions. We synthesized halide salts with hydroxy-functionalized pyridinium cations [HOCnPy]+ (n=2, 3, 4) and chloride, bromide and iodide anions, which are typically used as precursor material for synthesizing ionic liquids by anion metathesis reaction. The X-ray structures of these omnium halides show two types of hydrogen bonding: ‘intra-ionic’ H-bonds, wherein the anion interacts with the hydroxy group and the positively charged ring at the same cation, and ‘inter-ionic’ H-bonds, wherein the anion also interacts with the hydroxy group and the ring system but of different cations. We show that hydrogen bonding is controllable by the length of the hydroxyalkyl chain and the interaction strength of the anion. Some molten halide salts exhibit a third type of hydrogen bonding. IR spectra reveal elusive H-bonds between the OH groups of cations, showing interaction between ions of like charge. They are formed despite the repulsive interaction between the like-charged ions and compete with the favored cation-anion H-bonds. All types of H-bonding are analyzed by quantum chemical methods and the natural bond orbital approach, emphasizing the importance of charge transfer in these interactions. For simple omnium salts, we evidenced three distinct types of hydrogen bonds: Three in one!  相似文献   

10.
The effect of ionic liquids (ILs) on the solubility of cellulose was investigated by changing their anions and cations. The structural variation included 11 kinds of cations in combination with 4 kinds of anions. The interaction between the IL and cellobiose, the repeating unit of cellulose, was clarified through nuclear magnetic resonance (NMR) spectroscopy. The reason for different dissolving capabilities of various ILs was revealed. The hydrogen bonding interaction between the IL and hydroxyl was the major force for cellulose dissolution. Both the anion and cation in the IL formed hydrogen bonds with cellulose. Anions associated with hydrogen atoms of hydroxyls, and cations favored the formation of hydrogen bonds with oxygen atoms of hydroxyls by utilizing activated protons in imidazolium ring. Weakening of either the hydrogen bonding interaction between the anion and cellulose, or that between the cation and cellulose, or both, decreases the capability of ILs to dissolve cellulose.  相似文献   

11.
The quantification of hydrogen bonding and dispersion energies from vaporization enthalpies is a great challenge. Dissecting interaction energies is particularly difficult for ionic liquids (ILs), for which the composition of the different types of interactions is known neither for the liquid nor for the gas phase. In this study, we demonstrate the existence of ion pairs in the gas phase and dissect the interaction energies exclusively from measured vaporization enthalpies of different alkylated protic ILs (PILs) and aprotic ILs (AILs) and the molecular analogues of their cations. We demonstrate that the evaporated ion pairs are characterized by H‐bond‐enhanced Coulomb interaction. The overall interaction energy for the ILs in the bulk phase is composed of Coulomb interaction (76 kJ mol?1), hydrogen bonding (38 kJ mol?1), and minor dispersion interaction (10 kJ mol?1). Thus, hydrogen bonding prominently contributes to the overall interaction energy of PILs, which is reflected in the properties of this class of liquids.  相似文献   

12.
It is well known that gas‐phase experiments and computational methods point to the dominance of dispersion forces in the molecular association of hydrocarbons. Estimates or even quantification of these weak forces are complicated due to solvent effects in solution. The dissection of interaction energies and quantification of dispersion interactions is particularly challenging for polar systems such as ionic liquids (ILs) which are characterized by a subtle balance between Coulomb interactions, hydrogen bonding, and dispersion forces. Here, we have used vaporization enthalpies, far‐infrared spectroscopy, and dispersion‐corrected calculations to dissect the interaction energies between cations and anions in aprotic (AILs), and protic (PILs) ionic liquids. It was found that the higher total interaction energy in PILs results from the strong and directional hydrogen bonds between cation and anion, whereas the larger vaporization enthalpies of AILs clearly arise from increasing dispersion forces between ion pairs.  相似文献   

13.
Several recent studies of hydroxyl-functionalized ionic liquids (ILs) have shown that cation-cation interactions can be dominating these materials at the molecular level when the anion involved is weakly interacting. The hydrogen bonds between the like ions led to the formation of interesting chain-like, ring-like, or distinct dimeric (i. e. two ion pairs) supermolecular clusters. In the present work, vibrational spectroscopy (ATR-IR and Raman) and density functional theory (DFT) calculations of the hydroxyl-functionalized imidazolium ionic liquid C2OHmimCl indicate that anion-cation hydrogen bonding interactions are dominating, leading to the formation of distinct dimeric ion pair clusters. In this arrangement, the Cl anions function as a bridge between the cations by establishing bifurcated hydrogen bonds with the OH group of one cation and the C(2)-H of another cation. Cation–cation interactions, on the other hand, do not play a significant role in the observed clusters.  相似文献   

14.
We show that the carboxyl-functionalized ionic liquid 1-(carboxymethyl)pyridinium bis(trifluoromethylsulfonyl)imide [HOOC-CH2-py][NTf2] exhibits three types of hydrogen bonding: the expected single hydrogen bonds between cation and anion, and, surprisingly, single and double hydrogen bonds between the cations, despite the repulsive Coulomb forces between the ions of like charge. Combining X-ray crystallography, differential scanning calorimetry, IR spectroscopy, thermodynamic methods and DFT calculations allows the analysis and characterization of all types of hydrogen bonding present in the solid, liquid and gaseous states of the ionic liquid (IL). We find doubly hydrogen bonded cationic dimers (c+=c+) in the crystalline phase. With increasing temperature, this binding motif opens in the liquid and is replaced by (c+−c+−a species, with a remaining single cationic hydrogen bond and an additional hydrogen bond between cation and anion. We provide clear evidence that the IL evaporates as hydrogen-bonded ion pairs (c+−a) into the gas phase. The measured transition enthalpies allow the noncovalent interactions to be dissected and the hydrogen bond strength between ions of like charge to be determined.  相似文献   

15.
A quantum-chemical computational approach to accurately predict the nuclear magnetic resonance (NMR) properties of 1-alkyl-3-methylimidazolium ionic liquids has been performed by the gauge-including atomic orbitals method at the B3LYP/6-31++G** level using different simulated ionic liquid environments. The first molecular model chosen to describe the ionic liquid system includes the gas-phase optimized structures of ion pairs and separated ions of a series of imidazolium salts containing methyl, butyl, and octyl substituents and PF6-, BF4-, and Br- anions. In addition, a continuum polarizable model of solvation has been applied to predict the effects of the medium polarity on the molecular properties of 1,3-dimethylimidazolium hexafluorophosphate (MmimPF6). Furthermore, the specific acidic and basic solute-solvent interactions have been simulated by a discrete solvation model based on molecular clusters formed by MmimPF6 species and a discrete number of water molecules. The computational prediction of the NMR spectra allows a consistent interpretation of the dispersed experimental evidence in the literature. The following are main contributions of this work: (a) Theoretical results state the presence of a chemical equilibrium between ion-pair aggregates and solvent-separated counterions of 1-alkyl-3-methylimidazolium salts which is tuned by the solvent environment; thus, strong specific (acidic and basic) and nonspecific (polarity and polarizability) solvent interactions are predicted favoring the dissociated ionic species. (b) The calculated 1H and 13C NMR properties of these ionic liquids are revealed as highly dependent on the nature of solute-solvent interactions. Thus, the chemical shift of the hydrogen atom in position two of the imidazolium ring is deviated to high values by the specific interactions with water molecules, whereas nonspecific interaction with water (as a solvent) affects, in the opposite direction, this 1H NMR parameter. (c) Last, current calculations support the presence of hydrogen bonding between counterions, suggesting the importance of this interaction in the properties of the solvent in the 1-alkyl-3-methylimidazolium ionic liquids.  相似文献   

16.
Weakly coordinating borate or aluminate anions have recently been shown to yield interesting properties of the resulting ionic liquids (ILs). The same is true for large phenyl‐substituted imidazolium cations, which can be tuned by the choice, position, or number of substituents on the aromatic ring. We were therefore interested to combine these aryl alkyl imidazolium cations with the weakly coordinating tetrakis((1,1,1,3,3,3‐hexafluoropropan‐2‐yl)oxy)borate [B(hfip)4]? anions to study the physical properties and viscosities of these ionic liquids. Despite the large size and high molecular weight of these readily available ILs, they are liquid at room temperature and show remarkably low glass transition points and relatively high decomposition temperatures.  相似文献   

17.
The formation, stabilisation and reactivity of contact ion pairs of non‐protic imidazolium ionic liquids (ILs) in solution are conceptualized in light of selected experimental evidence as well theoretical calculations reported mainly in the last ten years. Electric conductivity, NMR, ESI‐MS and IR data as well as theoretical calculations support not only the formation of contact ion pairs in solution, but also the presence of larger ionic and neutral aggregates even when dissolved in solvents with relatively high dielectric constants, such as acetonitrile and DMSO. The presence of larger imidazolium supramolecular aggregates is favoured at higher salt concentrations in solvents of low dielectric constant for ILs that contain shorter N‐alkyl side chains associated with anions of low coordination ability. The stability and reactivity of neutral contact species are also dependent on the nature of the anion, imidazolium substituents, and are more abundant in ILs containing strong coordinating anions, in particular those that can form charge transfer complexes with the imidazolium cation. Finally, some ILs display reactivities as contact ion pairs rather than solvent‐separated ions.  相似文献   

18.
The intermolecular interaction energies of ion pairs of imidazolium-based ionic liquids were studied by MP2/6-311G level ab initio calculations. Although the hydrogen bond between the C(2) hydrogen atom of an imidazolium cation and anion has been regarded as an important interaction in controlling the structures and physical properties of ionic liquids as in the cases of conventional hydrogen bonds, the calculations show that the nature of the C(2)-H...X interaction is considerably different from that of conventional hydrogen bonds. The interaction energies of the imidazolium cation with neighboring anions in the four crystals of ionic liquids were calculated. The size of the interaction is determined mainly by the distance between the imidazolium ring and anion. The calculated interaction energy is nearly inversely proportional to the distance, which shows that the charge-charge interaction is the dominant interaction in the attraction. The orientation of the anion relative to the C(2)-H bond does not greatly affect the size of the interaction energy. Calculated interaction energy potentials of 1,3-dimethylimidazolium tetrafluoroborate ([dmim][BF(4)]) complexes show that the C(2)-H bond does not prefer to point toward a fluorine atom of the BF(4). This shows that the C(2)-H...X hydrogen bond is not essential for the attraction.  相似文献   

19.
Ion pair speciation of ionic liquids(ILs) has an important effect on the physical and chemical properties of ILs and recognition of the structure of ion pairs in solution is essential. It has been reported that ion pairs of some ILs can be formed by hydrogen bonding interactions between cations and anions of them. Considering the fact that far-IR(FIR) spectroscopy is a powerful tool in indicating the intermolecular and intramolecular hydrogen bonding, in this work, this spectroscopic technique has been combined with molecular dynamic(MD) simulation and nuclear magnetic resonance hydrogen spectroscopy(~1H NMR) to investigate ion pairs of aprotic ILs [Bmim][NO_3], [BuPy][NO_3], [Pyr_(14)][NO_3], [PP_(14)][NO_3] and [Bu-choline][NO_3] in aqueous IL mixtures. The FIR spectra have been assigned with the aid of density functional theory(DFT) calculations, and the results are used to understand the effect of cationic nature on the structure of ion pairs. It is found that contact ion pairs formed in the neat aprotic ILs by hydrogen bonding interactions between cation and anion, were still maintained in aqueous solutions up to high water mole fraction(say 0.80 for [BuPy][NO3]). When water content was increased to a critical mole fraction of water(say 0.83 for [BuPy][NO3]), the contact ion pairs could be transformed into solvent-separated ion pairs due to the formation of the hydrogen bonding between ions and water. With the further dilution of the aqueous ILs solution, the solvent-separated ion pairs was finally turned into free cations and free anions(fully hydrated cations or anions). The concentrations of the ILs at which the contact ion pairs were transformed into solvent-separated ion pairs and solvent-separated ion pairs were transformed into free ions(fully hydrated ion) were dependent on the cationic structures. These information provides direct spectral evidence for ion pair structures of the aprotic ILs in aqueous solution. MD simulation and ~1H NMR results support the conclusion drawn from FIR spectra investigations.  相似文献   

20.
Acrylate functionalized ionic liquids based on tetraalkylammonium salts with terminal acrylates- and methylacrylates were synthesized. Melting points and ionic conductivity of twenty compounds in six groups were determined. Within one group the effect of three different counterions was investigated and discussed. The groups differ in cationic structure elements because of their functional groups such as acrylate and methacrylate, alkyl residues at the nitrogen and number of quaternary ammonium atoms within the organic cation. The effect of these cationic structure elements has been examined concerning the compiled parameters with a view to qualifying them as components for solid state electrolytes. The newly synthesized ionic liquids were characterized by NMR and FTIR analysis. The exchange of halide ions like bromide as counter ions to weakly coordinating [PF?]?, [OTf]? or [TFSI]? reduces the melting points significantly and leads to an ion conductivity of about 10?? S/cm at room temperature. In the case of the dicationic ionic liquid, an ion conductivity of about 10?3 S/cm was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号