首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Persistent room‐temperature phosphorescence (RTP) in pure organic materials has attracted great attention because of their unique optical properties. The design of organic materials with bright red persistent RTP remains challenging. Herein, we report a new design strategy for realizing high brightness and long lifetime of red‐emissive RTP molecules, which is based on introducing an alkoxy spacer between the hybrid units in the molecule. The spacer offers easy Br−H bond formation during crystallization, which also facilitates intermolecular electron coupling to favor persistent RTP. As the majority of RTP compounds have to be confined in a rigid environment to quench nonradiative relaxation pathways for bright phosphorescence emission, nanocrystallization is used to not only rigidify the molecules but also offer the desirable size and water‐dispersity for biomedical applications.  相似文献   

2.
Considering that heavy halogen atoms can be used to tune the emissive properties of organic luminogens, the understanding of their role in photophysics is fundamental for materials engineering. Here, the extrinsic and intrinsic heavy-atom effects on the photophysics of organic crystals were separately evaluated by comparing cyclic triimidazole ( TT ) with its monoiodo derivative ( TTI ) and its co-crystal with diiodotetrafluorobenzene ( TTCo ). Crystals of TT showed room-temperature ultralong phosphorescence (RTUP) originated from H-aggregation. TTI and TTCo displayed two additional long-lived components, the origin of which is elucidated through single-crystal X-ray and DFT/TDDFT studies. The results highlight the different effects of the I atom on the three phosphorescent emissions. Intrinsic heavy-atom effects play a major role on molecular phosphorescence, which is displayed at room temperature only for TTI . The H-aggregate RTUP and the I⋅⋅⋅N XB-induced (XB=halogen bond) phosphorescence on the other side depend only on packing features.  相似文献   

3.
A D‐A‐D′ type pure organic molecule, named ODFRCZ, has unique triple‐emission character covering fluorescence, phosphorescence, and delayed fluorescence (DF). The phosphorescence of ODFRCZ has a rather long lifetime of about 350 ms at room temperature. One dimer of ODFRCZ with enhanced parallel molecular packing acts more effectively to prompt ISC processes, which further generates room‐temperature phosphorescence (RTP), owing to the larger transition dipole moment and closer energy level between S1 and Tn. ODFRCZ is a rare example of an organic RTP molecule that shows dual‐stimuli responsiveness of dual‐mode mechanochromism (fluorescence red‐shift and RTP/DF on‐off switch) and reversible crystal‐state photochromism. This work may broaden the knowledge for stimuli‐responsive RTP organic molecules and lay the foundation for their wide‐scale applications.  相似文献   

4.
A D‐A‐D′ type pure organic molecule, named ODFRCZ, has unique triple‐emission character covering fluorescence, phosphorescence, and delayed fluorescence (DF). The phosphorescence of ODFRCZ has a rather long lifetime of about 350 ms at room temperature. One dimer of ODFRCZ with enhanced parallel molecular packing acts more effectively to prompt ISC processes, which further generates room‐temperature phosphorescence (RTP), owing to the larger transition dipole moment and closer energy level between S1 and Tn. ODFRCZ is a rare example of an organic RTP molecule that shows dual‐stimuli responsiveness of dual‐mode mechanochromism (fluorescence red‐shift and RTP/DF on‐off switch) and reversible crystal‐state photochromism. This work may broaden the knowledge for stimuli‐responsive RTP organic molecules and lay the foundation for their wide‐scale applications.  相似文献   

5.
The stability of pure organic room‐temperature phosphorescent (RTP) materials in air has been a research hotspot in recent years. Without crystallization or encapsulation, a new strategy was proposed to obtain self‐stabilized organic RTP materials, based on a complete ionization of a photo‐induced charge separation system. The ionization of aromatic phenol 4‐carbazolyl salicylaldehyde (CSA) formed a stable H‐bonding anion–cation radical structure and led to the completely amorphous CSA‐I film. Phosphorescent lifetimes as long as 0.14 s at room temperature and with direct exposure to air were observed. The emission intensity was also increased by 21.5‐fold. Such an amorphous RTP material reconciled the contradiction between phosphorescence stability and vapor permeability and has been successfully utilized for peroxide vapor detection.  相似文献   

6.
Pure organic room temperature phosphorescence (RTP) has been attracting a lot interest recently. So far, many strategies have succeeded in achieving efficient organic RTP materials by increasing the rate of intersystem crossing (ISC) and suppressing non-radiative transitions. In supramolecular chemistry, the control and regulation of molecular recognition based on the role of the host and guest in supramolecular polymers matrix, has attracted much attention. Recently, researchers have successfully achieved room temperature phosphorescence of pure organic complexes through host-guest interactions. The host molecule specifically includes the phosphorescent guest to reduce non-radiative transitions and enhance room temperature phosphorescence emission. This review aims to describe the developments and achievements of pure organic room temperature phosphorescence systems through the mechanism of host-guest interactions in recent years, and demonstrates the exploration and pursuit of phosphorescent materials of researchers in different fields.  相似文献   

7.
The inclusion of specific organic phosphorescent guest molecules by the host molecules can reduce the nonradiative transitions and engender room temperature phosphorescence emission.  相似文献   

8.
Organic room temperature phosphorescence (RTP) materials have drawn increasing attention due to their unique features, especially the long emission lifetime for applications in biomedicine. In this review, we provide an overview of the recent developments of organic RTP materials applied in the biomedicine field. First, we introduce the basic mechanism of phosphorescence and subsequently we present various strategies of modulating the lifetime and efficiency of room temperature organic phosphorescence. Next, we summarize the progress of organic RTP materials in biological applications, including bioimaging, anti‐cancer and antibacterial therapies. Finally, we provide an outlook with regard to the challenges and future perspectives in the field.  相似文献   

9.
Pure organic materials with intrinsic room‐temperature phosphorescence typically rely on heavy atoms or heteroatoms. Two different strategies towards constructing organic room‐temperature phosphorescence (RTP) species based upon the through‐space charge transfer (TSCT) unit of [2.2]paracyclophane (PCP) were demonstrated. Materials with bromine atoms, PCP‐BrCz and PPCP‐BrCz, exhibit RTP lifetime of around 100 ms. Modulating the PCP core with non‐halogen‐containing electron‐withdrawing units, PCP‐TNTCz and PCP‐PyCNCz, successfully elongate the RTP lifetime to 313.59 and 528.00 ms, respectively, the afterglow of which is visible for several seconds under ambient conditions. The PCP‐TNTCz and PCP‐PyCNCz enantiomers display excellent circular polarized luminescence with dissymmetry factors as high as ?1.2×10?2 in toluene solutions, and decent RTP lifetime of around 300 ms for PCP‐TNTCz enantiomers in crystalline state.  相似文献   

10.
Although persistent room‐temperature phosphorescence (RTP) emission has been observed for a few pure crystalline organic molecules, there is no consistent mechanism and no universal design strategy for organic persistent RTP (pRTP) materials. A new mechanism for pRTP is presented, based on combining the advantages of different excited‐state configurations in coupled intermolecular units, which may be applicable to a wide range of organic molecules. By following this mechanism, we have developed a successful design strategy to obtain bright pRTP by utilizing a heavy halogen atom to further increase the intersystem crossing rate of the coupled units. RTP with a remarkably long lifetime of 0.28 s and a very high quantum efficiency of 5 % was thus obtained under ambient conditions. This strategy represents an important step in the understanding of organic pRTP emission.  相似文献   

11.
Organic luminogens with persistent room‐temperature phosphorescence (RTP) have found a wide range of applications. However, many RTP luminogens are prone to severe quenching in the crystalline state. Herein, we report a strategy to construct a donor‐sp3‐acceptor type luminogen that exhibits aggregation‐induced emission (AIE) while the donor‐sp2‐acceptor counterpart structure exhibits a non‐emissive solid state. Unexpectedly, it was discovered that a trace amount (0.01 %) of the structurally similar derivative, produced by a side reaction with the DMF solvent, could induce strong RTP with an absolute RTP yield up to 25.4 % and a lifetime of 48 ms, although the substance does not show RTP by itself. Single‐crystal XRD‐based calculations suggest that n–σ* orbital interactions as a result of structural similarity may be responsible for the strong RTP in the bicomponent system. This study provides a new insight into the design of multi‐component, solid‐state RTP materials from organic molecular systems.  相似文献   

12.
Molecular materials exhibiting room temperature phosphorescence(RTP) have received much attention during last few years. It has been known that different stacking fashions(e.g., formation of polymorph) and aggregation/crystal states could largely influence the RTP efficiency. However, whether the crystal morphology or shape could play a key role in modulation of the RTP has not been detected yet. In this work, we report that the dibenzothiophene(DBT) with the same molecular stacking fashion but different crystal morphologies can present alternated RTP performances. By modulation of the fluorescence and phosphorescence dual emission, a direct warm-white color light-emitting has also been successfully achieved. Moreover, the RTP emission can be further tuned through hybridization with β-cyclodextrin in different ratios, with the longest lifetime of 0.43 s.  相似文献   

13.
Solid‐state materials with efficient room‐temperature phosphorescence (RTP) emissions have found widespread applications in materials science, while liquid or solution‐phase pure organic RTP emission systems has been rarely reported, because of the nonradiative decay and quenchers from the liquid medium. Reported here is the first example of visible‐light‐excited pure organic RTP in aqueous solution by using a supramolecular host‐guest assembly strategy. The unique cucurbit[8]uril‐mediated quaternary stacking structure allows tunable photoluminescence and visible‐light excitation, enabling the fabrication of multicolor hydrogels and cell imaging. The present assembly‐induced emission approach, as a proof of concept, contributes to the construction of novel metal‐free RTP systems with tunable photoluminescence in aqueous solution, providing broad opportunities for further applications in biological imaging, detection, optical sensors, and so forth.  相似文献   

14.
《Analytical letters》2012,45(3):603-617
Abstract

In this paper we report on the low temperature phosphorescence (LTP), the low temperature fluorescence (LTF), the paper substrate room temperature phosphorescence (PS‐RTP), and the room fluorescence (RTF) properties of ciprofloxacin (CPFX), lomefloxacin (LMX), fleroxacin (FLX), and ofloxacin (OFLX), which were investigated and compared. Some rules were discovered: their maximal excitation wavelength and emission wavelength are in the range of 280–295 nm and 428–500 nm, respectively, except OFLX, and the difference in molecular structure may be responsible for it. The pH experiments show that all their emissions are strongest in acid, followed by neutral, and weakest in alkali medium. The PS‐RTP characters of lifetime and polarization were also investigated and compared. It was found that the lifetimes of PS‐RTP were all in the level of 0.1 s. These quinolones belong to long‐life phosphorescence and their PS‐RTP spectra are incompletely polarized.  相似文献   

15.
Room‐temperature phosphorescence (RTP) emitters with ultralong lifetimes are emerging as attractive targets because of their potential applications in bioimaging, security, and other areas. But their development is limited by ambiguous mechanisms and poor understanding of the correlation of the molecular structure and RTP properties. Herein, different substituents on the 9,9‐dimethylxanthene core (XCO) result in compounds with RTP lifetimes ranging from 52 to 601 ms, which are tunable by intermolecular interactions and molecular configurations. XCO‐PiCl shows the most persistent RTP because of its reduced steric bulk and multiple sites of the 1‐chloro‐2‐methylpropan‐2‐yl (PiCl) moiety for forming intermolecular interactions in the aggregated state. The substituent effects reported provide an efficient molecular design of organic RTP materials and establishes relationships among molecular structures, intermolecular interactions, and RTP properties.  相似文献   

16.
Pure organic luminogens with persistent room‐temperature phosphorescence (p‐RTP) have attracted increasing attention owing to their vital significance and potential applications in security inks, bioimaging, and photodynamic therapy. Previously reported p‐RTP luminogens normally possessed through‐bond conjugation. In this work, we report a pure organic luminogen, AN‐MA, the Diels–Alder cycloaddition adduct of anthracene (AN) and maleic anhydride (MA), which possesses isolated phenyl groups and an anhydride moiety. AN‐MA exhibits aggregation‐enhanced emission (AEE) characteristics with efficiency of approximately 2 % and up to 8.5 % in solution and crystals, respectively. Two polymorphs of AN‐MA were readily obtained that were able to generate UV emission from individual phenyl rings together with bright blue emission owing to the effective through‐space conjugation. Moreover, p‐RTP with a lifetime of up to approximately 1.6 s was obtained in the crystals. These results not only reveal a new system with both fluorescence and RTP dual emission but also suggest an alternative through‐space conjugation strategy towards pure organic p‐RTP luminogens with tunable emissions.  相似文献   

17.
Achieving highly efficient phosphorescence in purely organic luminophors at room temperature remains a major challenge due to slow intersystem crossing (ISC) rates in combination with effective non‐radiative processes in those systems. Most room temperature phosphorescent (RTP) organic materials have O‐ or N‐lone pairs leading to low lying (n, π*) and (π, π*) excited states which accelerate kisc through El‐Sayed's rule. Herein, we report the first persistent RTP with lifetimes up to 0.5 s from simple triarylboranes which have no lone pairs. RTP is only observed in the crystalline state and in highly doped PMMA films which are indicative of aggregation induced emission (AIE). Detailed crystal structure analysis suggested that intermolecular interactions are important for efficient RTP. Furthermore, photophysical studies of the isolated molecules in a frozen glass, in combination with DFT/MRCI calculations, show that (σ, B p)→(π, B p) transitions accelerate the ISC process. This work provides a new approach for the design of RTP materials without (n, π*) transitions.  相似文献   

18.
Amorphous purely organic phosphorescence materials with long‐lived and color‐tunable emission are rare. Herein, we report a concise chemical ionization strategy to endow conventional poly(4‐vinylpyridine) (PVP) derivatives with ultralong organic phosphorescence (UOP) under ambient conditions. After the ionization of 1,4‐butanesultone, the resulting PVP‐S phosphor showed a UOP lifetime of 578.36 ms, which is 525 times longer than that of PVP polymer itself. Remarkably, multicolor UOP emission ranging from blue to red was observed with variation of the excitation wavelength, which has rarely been reported for organic luminescent materials. This finding not only provides a guideline for developing amorphous polymers with UOP properties, but also extends the scope of room‐temperature phosphorescence (RTP) materials for practical applications in photoelectric fields.  相似文献   

19.
Purely organic materials with room‐temperature phosphorescence (RTP) are currently under intense investigation because of their potential applications in sensing, imaging, and displaying. Inspired by certain organometallic systems, where ligand‐localized phosphorescence (3π‐π*) is mediated by ligand‐to‐metal or metal‐to‐ligand charge transfer (CT) states, we now show that donor‐to‐acceptor CT states from the same organic molecule can also mediate π‐localized RTP. In the model system of N‐substituted naphthalimides (NNIs), the relatively large energy gap between the NNI‐localized 1π‐π* and 3π‐π* states of the aromatic ring can be bridged by intramolecular CT states when the NNI is chemically modified with an electron donor. These NNI‐based RTP materials can be easily conjugated to both synthetic and natural macromolecules, which can be used for RTP microscopy.  相似文献   

20.
Herein we report a rational design strategy for tailoring intermolecular interactions to enhance room‐temperature phosphorescence from purely organic materials in amorphous matrices at ambient conditions. The built‐in strong halogen and hydrogen bonding between the newly developed phosphor G1 and the poly(vinyl alcohol) (PVA) matrix efficiently suppresses vibrational dissipation and thus enables bright room‐temperature phosphorescence (RTP) with quantum yields reaching 24 %. Furthermore, we found that modulation of the strength of halogen and hydrogen bonding in the G1–PVA system by water molecules produced unique reversible phosphorescence‐to‐fluorescence switching behavior. This unique system can be utilized as a ratiometric water sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号