首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
15‐Cyano‐12‐oxopentadecano‐15‐lactone was synthesized in 59% total yield starting from 2‐nitrocyclododecanone by Michael addition to acrylaldehyde, followed by reaction with trimethylsilylcyanide, hydrolysis, ring‐expansion, and Nef reaction. A two‐step, one‐pot synthesis of intermediate 2‐hydroxy‐4‐(1‐nitro‐2‐oxycyclododecyl)butanenitrile from 3‐(1‐nitro‐2‐oxocyclododecyl)propanal was developed and the conditions for the Nef reaction were studied. 15‐Cyano‐12‐oxopentadecano‐15‐lactam was synthesized in 40% total yield starting from 2‐nitrocyclododecanone by Michael addition to acrylaldehyde, followed by Strecker reaction, ring‐expansion, and Nef reaction. The conditions for the Strecker and Nef reactions were studied. The structures of the target compounds, intermediates, and by‐product were characterized by IR, 1H‐ and 13C‐NMR, and elemental analysis or MS.  相似文献   

2.
An unexpected approach to the preparation of quinoxaline and pyrido[2,3‐b]pyrazine derivatives 5 is described. The reaction between 1H‐indole‐2,3‐diones 1 , 1‐phenyl‐2‐(triphenylphosphoranylidene)ethanone ( 2 ), and benzene‐1,2‐ or pyridine‐2,3‐diamines 3 proceeds in MeOH under reflux in good to excellent yields (Scheme 1 and Table). No co‐catalyst or activator is required for this multi‐component reaction (MCR), and the reaction is, from an experimental point of view, simple to perform. The structures of 5, 5′ , and 6 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and were confirmed by comparison with reference compounds. A plausible mechanism for this type of reaction is proposed (Scheme 2).  相似文献   

3.
Electrochemiluminescence (ECL) from tris(2‐phenylpyridine)irdium [Ir(ppy)3] was investigated following cross reaction of its anion with oxidized poly(N‐vinyl‐carbazole) (PVK) and its cation with reduced 2‐(4‐biphenylyl)‐5‐(4‐tert‐butyl‐phenyl)‐1,3,4‐oxadiazole (PBD). Both cross reactions show Ir(ppy)3 emission and the cross reaction of PVK/Ir(ppy)3 showed the highest ECL intensity. The comparisons of the reaction enthalpy and the energy of Ir(ppy)3 light emitting shows that reaction between PVK and Ir(ppy)3 is energy sufficient to populate metal‐to‐ligand charge transfer (MLCT) excited singlet (3.04 eV) of Ir(ppy)3, while the reaction between Ir(ppy)+3 and PBD− · is energy efficient to populate MLCT excited triplet (2.4 eV). The ECL result in solution reveals that the energy released from charge transfer between the Ir(ppy)3 and PVK or PBD is sufficient to produce the excited state of Ir(ppy)3 in solid polymer light‐emitting diodes (PLEDs) based on PVK:PBD hosts doped by Ir(ppy)3. These results obtained will provide further insight into charge‐transfer excitation in PLEDs.  相似文献   

4.
Lei Wu  Jing Sun  Chaoguo Yan 《中国化学》2012,30(3):590-596
A sequential one‐pot two‐step reaction for efficient synthesis of pyrrolo[2,1‐a]isoquinoline and pyrrolo[1,2‐a]quinoline derivatives in good yields has been successfully developed. The reaction included firstly Cu‐catalyzed three‐component reaction of isoquinoline (quinoline), acetylenedicarboxylate and alkynylbenzene and then Pd‐catalyzed intramolecular C(sp)‐C(sp2) coupling reaction of initially formed 1‐alkenyl‐2‐alkynyl‐1,2‐dihydroisoquinoline (1,2‐dihydroquinoline).  相似文献   

5.
A bottom‐up strategy was used for the synthesis of cross‐linked copolymers containing the organocatalyst N‐{(1R)‐2′‐{[(4‐ethylphenyl)sulfonyl]amino}[1,1′‐binaphthalen]‐2‐yl}‐D ‐prolinamide derived from 2 (Scheme 1). The polymer‐bound catalyst 5b containing 1% of divinylbenzene as cross‐linker showed higher catalyst activity in the aldol reaction between cyclohexanone and 4‐nitrobenzaldehyde than 5a and 5c . Remarkably, the reaction in the presence of 5b was carried out under solvent‐free, mild conditions, achieving up to 93% ee (Table 1). The polymer‐bound catalyst 5b was recovered by filtration and re‐used up to seven times without detrimental effects on the achieved diastereo‐ and enantioselectivities (Table 2). The catalytic procedure with polymer 5b was extended to the aldol reaction under solvent‐free conditions of other ketones, including functionalized ones, and different aromatic aldehydes (Table 3). In some cases, the addition of a small amount of H2O was required to give the best results (up to 95% ee). Under these reaction conditions, the cross‐aldol reaction between aldehydes proceeded in moderate yield and diastereo‐ and enantioselectivity (Scheme 2).  相似文献   

6.
Novel α‐(acyloxy)‐α‐(quinolin‐4‐yl)acetamides were synthesized by the Passerini three‐component reaction between an isocyanide, quinoline‐4‐carbaldehyde, and arenecarboxylic acids in H2O. The reactions were carried out in one pot at room temperature with quantitative yields.  相似文献   

7.
A facile, fast and high efficiency micellar EKC has been explored for the analysis and UV detection of p‐nitrobenzaldehyde and 2‐[hydroxy(4‐nitrophenyl)methyl]‐2‐cyclopenten‐1‐one with a buffer electrolyte of 30.0 mM tetraborate and 50.0 mM sodium taurodeoxycholate at pH 9.3. Under the optimal conditions, a linear range from 7.8×10–2 to 5.0×102 mM for those analytes (r2 > 0.99) was achieved. The LOD was 3.9 μM for 2‐[hydroxy(4‐nitrophenyl)methyl]‐2‐cyclopenten‐1‐one and 7.8 μM for p‐nitrobenzaldehyde, respectively (S/N = 3). The applicability of this new method for the analysis of reactants (p‐nitrobenzaldehyde and cyclopent‐2‐enone), catalysts (imidazole or N‐methyl imidazole or 1‐benzyl‐imidazole) and product (2‐[hydroxy(4‐nitrophenyl)methyl]‐2‐cyclopenten‐1‐one) on offline Baylis–Hillman reaction was examined. The relationship between the reaction time and the amount of product has been studied. Meanwhile, three different kinds of catalysts were investigated for getting the desired moderate to good amount products. It was found that comparing with N‐methyl imidazole or 1‐benzyl‐imidazole catalyst, imidazole‐catalyzed reaction could produce more products within the same reaction time. Furthermore, the results indicated that the rate law for the investigated Baylis–Hillman reaction was second‐order reaction. The rate constant for the reaction is 1.34 (±0.01)×10–3 mol–1 m3/s.  相似文献   

8.
A new and convenient method for the preparation of 3,4‐dihydroquinazolines 5 with aryl and Ac groups at C(2) and N(3), respectively, has been developed. The key sequence is the formation of aza‐phosphorane intermediates by the reaction of N‐[2‐(azidomethyl)phenyl]benzamides 1 with Ph3P, followed by intramolecular aza‐Wittig reaction and 3‐acetylation, which can be conducted in one‐pot.  相似文献   

9.
《中国化学》2017,35(12):1808-1812
A one‐pot three‐component reaction of aldehydes, nitroalkanes and NaN3 for the synthesis of NH ‐1,2,3‐triazoles has been developed. The reaction provides a safe, efficient and step‐economic approach for the synthesis of various NH ‐1,2,3‐triazoles in good to excellent yields.  相似文献   

10.
In the presence of zinc chloride, the in situ generated β‐enamino ester from the reaction of morpholine, piperidine and pyrrolidine with methyl propiolate reacted, with aromatic aldehydes and thiourea in ethanol resulting in the functionalized tetrahydropyrimidin‐2‐thiones in satisfactory yields and with good diastereoselectivity. When aromatic aldehydes bearing electron‐withdrawing group were used in the reaction, the 4‐hydroxytetrahydropyrimidin‐2‐thione derivatives were obtained as the main product.  相似文献   

11.
Pteridines substituted with a 1,1‐, 1,2‐, or 1,1,3‐substituted alkenyl group (mostly (E)‐configured) at C(6) were synthesized in high yields by the intramolecular nitroso‐ene reaction of 4‐(alkenoylamino)‐2‐amino‐6‐benzyloxy‐5‐nitroso‐ and 4‐(alkenoylamino)‐2,6‐diamino‐5‐nitrosopyrimidines. Thus, the N‐alkenoyl nitrosopyrimidines 4 and 5 provided the pteridines 6 and 7 , respectively, characterized by a 1,2‐disubstituted (E)‐alkenyl substituent, the C(4)‐(E)‐geranoyl amide 13 led regio‐ and stereoselectively to the (E)‐1,1,2‐trisubstituted alkenyl‐pteridine 16 , and the C(4)‐(Z) isomer 14 led to 17 possessing a 1,1‐disubstituted alkenyl group. The trifluoromethylated butenoyl amide 15 possessing a less highly nucleophilic alkenoyl group reacted more slowly to give the trifluoromethylated vinylpteridine 18 . Also the 4‐(alkenoylamino)‐2,6‐diamino‐5‐nitrosopyrimidine 20 reacted more slowly than 4 and 5 , and provided the pteridines 23 ; introduction of additional N‐acyl groups as in 21 and 22 led to a considerably faster ene reaction. The X‐ray crystal structure analysis of the nitroso amide 15 shows eight symmetrically independent molecules in the unit cell. In the crystalline state, the N,N‐dimethylformamidine derivative 9 of 6 forms a centrosymmetric dimer with the 7,8‐lactam group connected by intermolecular hydrogen bonds.  相似文献   

12.
Well‐defined linear α‐anthracene‐ω‐maleimide functionalized polystyrene (l‐Anth‐PS‐MI) and linear α‐alkyne‐ω‐maleimide functionalized poly(tert‐butyl acrylate) (l‐alkyne‐PtBA‐MI) homopolymers, and linear α‐anthracene‐ω‐maleimide functionalized PS‐b‐PtBA (l‐Anth‐PS‐b‐PtBA‐MI) and linear α‐anthracene‐ω‐maleimide functionalized PS‐b‐poly(ε‐caprolactone) (PCL) (l‐Anth‐PS‐b‐PCL‐MI) block copolymers were obtained via combination of atom transfer radical polymerization (ATRP)/ring opening polymerization (ROP) and azide‐alkyne click reaction strategy. Subsequently, these linear homo and block copolymers were efficiently clicked via Diels‐Alder reaction to give their corresponding cyclic homo and block copolymers at reflux temperature of toluene for 48 h under 7–4 × 10?5 M conditions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

13.
《合成通讯》2013,43(9):1589-1597
Abstract

Precipitation of products by using dichloromethane as solvent permits an efficient aldol‐type reaction between 1,4‐diacetyl‐2,5‐piperazinedione and aromatic aldehydes catalyzed by K t BuO/ t BuOH independently of the electrophilic character of the aryl ring. A simple method to obtain 3‐methyl‐2,4,5‐trimethoxybenzaldehyde is also reported.  相似文献   

14.
The first synthetic approach to (±)‐Δ3‐2‐hydroxybakuchiol (=4‐[(1E,5E)‐3‐ethenyl‐7‐hydroxy‐3,7‐dimethylocta‐1,5‐dien‐1‐yl]phenol; 14 ) and its analogues 13a – 13f was developed by 12 steps (Schemes 2 and 3). The key features of the approach are the construction of the quaternary C‐center bearing the ethenyl group by a Johnson–Claisen rearrangement (→ 6 ); and of an (E)‐alkenyl iodide via a Takai–Utimoto reaction (→ 11 ); and an arylation via a Negishi cross‐coupling reaction (→ 12e – 12f ).  相似文献   

15.
A simple, one‐step, stereoconservative synthesis of diamine‐based peptidomimetics is described, by split‐Ugi multicomponent reaction, involving chiral N‐protected amino acids and α‐substituted isocyanoacetate. In particular, piperazine and bispidine (3,7‐diazabicyclo[3.3.1]nonane) are exploited as diamine components, bispidine being the first example of a sterically demanding bicyclic system employed in a split‐Ugi reaction.  相似文献   

16.
An effective route to functionalized 2H‐chromene (=2H‐1‐benzopyran) derivatives 4 is described (Scheme 1). This involves the reaction of a 1,1‐diactivated alkene, resulting from the reaction of dimedone (=5,5‐dimethylcyclohexane‐1,3‐dione; 1a ) with methyl chloroglyoxylate (ClC(O)COOMe), benzyl carbonochloridate (ClC(O)OCH2Ph) or 3,5‐dinitrobenzoyl chloride (3,5‐(NO2)2C6H3C(O)Cl), and a dialkyl acetylenedicarboxylate (=dialkyl but‐2‐ynedioate) in the presence of Ph3P which undergo intramolecular Wittig reaction to produce 2H‐chromene derivatives (Scheme 1).  相似文献   

17.
A simple and highly efficient stereoselective total synthesis of the 6‐alkylated pyranones (6R)‐6‐[(1E,4R,6R)‐4,6‐dihydroxy‐10‐phenyldec‐1‐en‐1‐yl]‐5,6‐dihydro‐2H‐pyran‐2‐one ( 1 ) and (6S)‐5,6‐dihydro‐6‐[(2R)‐2‐hydroxy‐6‐phenylhexyl]‐2H‐pyran‐2‐one ( 2 ) was developed using Crimmins' aldol reaction, SmI2 reduction, GrubbsII‐catalyzed olefin cross‐metathesis, and Still's modified Horner? Wadsworth? Emmons reaction.  相似文献   

18.
The Ritter reaction, that is, reaction of a carbocation with a nitrile, was carried out on polyisobutylene (PIB) using a variety of reaction conditions. End quenching of PIB carbocations with acrylonitrile under living polymerization conditions (methyl chloride (MeCl)/hexane 60/40 (v/v) solvent mixtures at −70 °C) resulted in either tert‐chloride end groups or loss of chain‐end fidelity via carbocation rearrangement, as evidenced by NMR spectroscopy. Exo‐olefin functionalized PIB substrates were also reacted with nitriles under a variety of reaction conditions including various acid and solvent medium combinations. In all cases, the result was either no reaction or PIB that had undergone severe backbone degradation, as determined via NMR spectroscopy and gel permeation chromatography. Finally, the Ritter reaction was performed on a series of exo‐olefin functionalized oligoisobutylenes using acrylonitrile as the nitrile and either 60/40 dichloromethane/hexane or excess acrylonitrile as the solvent. In 60/40 dichloromethane/hexane, significant carbocation rearrangement and/or degradation resulted in a variety of isomeric, acrylamide‐functionalized oligomers. In excess acrylonitrile, the desired Ritter reaction was the only reaction observed, resulting in the smooth formation of the terminal acrylamide. The various N‐oligoisobutylacrylamides thus obtained represent new hydrophobic monomers useful for the introduction of hydrophobic moieties into acrylamide‐based water‐soluble polymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 840–852  相似文献   

19.
An efficient and concise synthesis of the biologically interesting (+)‐machaeriol B ( 2 ) and its enantiomer 5 was accomplished from O‐phenylhydroxylamine ( 7 ) in four steps (Scheme 2). In addition, the first total synthesis of natural (+)‐machaeriol C ( 3 ) and its enantiomer 6 was achieved from the readily available ester 15 in eight steps (Scheme 4). The key strategies in the syntheses of 2 and 5 involved benzofuran formation through a [3,3]‐sigmatropic rearrangement and trans‐hexahydrodibenzopyran formation by a domino aldol‐type/hetero‐Diels–Alder reaction. In the case of 3 and 6 , the key steps were stilbene formation by a Horner–Wadsworth–Emmons reaction and trans‐hexahydrodibenzopyran formation by domino reactions.  相似文献   

20.
The stereoselective total synthesis of an antiproliferative and antifungal α‐pyrone natural product (6S)‐5,6‐dihydro‐6‐[(2R)‐2‐hydroxy‐6‐phenylhexyl]‐2H‐pyran‐2‐one is described. The key steps involved are the Prins cyclization, Mitsunobu reaction, and ring‐closing metathesis reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号