首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the electrophilic C−H borylation of electron‐rich aromatic compounds with catecholborane, the catalytic generation of the boron electrophile is initiated by heterolysis of the B−H bond by various Lewis and Brønsted acids, with a boronium ion formed exclusively. After ligand dissociation, the corresponding borenium ion undergoes regioselective electrophilic aromatic substitution on aniline derivatives as well as nitrogen‐containing heterocycles. The catalysis is optimized using B(C6F5)3 as the initiator and proceeds without the addition of an external base or dihydrogen acceptor. Temperatures above 80 °C are generally required to secure efficient turnover in these Friedel–Crafts‐type reactions. Mechanistic experiments reveal that regeneration of the boronium/borenium ion with dihydrogen release is rate‐determining. This finding finally led to the discovery that, with added alkenes, catalytic C−H borylations can, for the first time, be carried out at room temperature.  相似文献   

2.
Described herein is the selective reduction of sugars with hydrosilanes catalyzed by using Piers’ borane [(C6F5)2BH] generated in situ. The hydrosilylative C−O bond cleavage of silyl‐protected mono‐ and disaccharides in the presence of a (C6F5)2BH catalyst, generated in situ from (C6F5)2BOH, takes place with excellent chemo‐ and regioselectivities to provide a range of polyols. A study of the substituent effects of sugars on the catalytic activity and selectivity revealed that the steric environment around the anomeric carbon (C1) is crucial.  相似文献   

3.
A facile route toward the synthesis of isoquinolin‐3‐ones through a cooperative B(C6F5)3‐ and Cp*CoIII‐catalyzed C?H bond activation of imines with diazo compounds is presented. The inclusion of a catalytic amount of B(C6F5)3 results in a highly efficient reaction, thus enabling unstable NH imines to serve as substrates.  相似文献   

4.
Sehoon Park 《中国化学》2019,37(10):1057-1071
Transition metal‐catalyzed hydrosilylation is one of the most widely utilized reduction methods as an alternative to hydrogenation in academia and industry. One feature distinct from hydrogenation would be able to install sp3 C—Si bond(s) onto substrates skeleton via hydrosilylation of alkenes. Recently, B(C6F5)3 with hydrosilanes has been demonstrated to be an efficient, metal‐free catalyst system for the consecutive transformation of heteroatom‐containing substrates accompanied by the formation of sp3 C—Si bond(s), which has not been realized thus far under the transition metal‐catalyzed hydrosilylative conditions. In this review, I outline the B(C6F5)3‐mediated consecutive hydrosilylations of heteroarenes containing quinolines, pyridines, and furans, and of conjugated nitriles/imines to provide a new family of compounds having sp3 C—Si bond(s) with high chemo‐, regio‐ and/or stereoselectivities. The silylative cascade conversion of unactivated N‐aryl piperidines to sila‐N‐heterocycles catalyzed by B(C6F5)3 involving consecutive dehydrogenation, hydrosilylation, and intramolecular C(sp2)—H silylation, is presented in another section. Chemical selectivity and mechanism of the boron catalysis focused on the sp3 C—Si bond formation are highlighted.  相似文献   

5.
The reaction of SIPr, [1,3‐bis(2,6‐diisopropylphenyl)‐imidazolin‐2‐ylidene] ( 1 ), with C6F6 led to the formation of an unprecedented mesoionic compound ( 2 ). The formation of 2 is made accessible by deprotonation of the SIPr backbone with simultaneous elimination of HF. The C?F bond para to the imidazolium ring in 2 is only of 1.258(4) Å, which is the one of the shortest structurally authenticated C?F bonds known to date. The liberation of HF during the reaction is unequivocally proved by the addition of one more equivalent of SIPr, which leads to the imidazolium salt with the HF2? anion. To functionalize 2 , the latter reacted with B(C6F5)3 to give an unusual donor–acceptor compound, where the fluoride atom from the C6F5 moiety coordinates to B(C6F5)3 and the carbanion moiety remains unaffected. Such coordination susceptibility of the fluoride atom of a nonmetallic system to a main‐group Lewis acid (Fnon‐metal→BR3) is quite unprecedented.  相似文献   

6.
Because the construction of the C?C bond is one of the most significant reactions in organic chemistry, the development of an efficient strategy has attracted much attention throughout the synthetic community. Among various protocols to form C?C bonds, organoboron compounds are not just limited to stoichiometric reagents, but have also made great achievements as catalysts because of the easy modification of the electronic and steric impacts on the boron center. This review presents recent developments of boron‐based catalysts applied in the field of C?C bond‐formation reactions, which are classified into four kinds on the basis of the type of boron catalyst: 1) highly Lewis acidic borane, B(C6F5)3; 2) organoboron acids, RB(OH)2, and their ester derivatives; 3) borenium ions, (R2BL)X; and 4) other miscellaneous kinds.  相似文献   

7.
Tandem Friedel‐Crafts (FC) and C?H/C?O coupling reactions catalyzed by tris(pentafluorophenyl) borane (B(C6F5)3) were achieved without using any other additive in the absence of solvent. This process can be used for the reactions between a series of dialkylanilines and vinyl ethers with good isolated yields of bis(4‐dialkylaminophenyl) compounds. Based on combined theoretical and experimental studies, the possible reaction mechanism was proposed. B(C6F5)3 can activate the C=C and C?O bond for FC and C?H/C?O coupling reactions respectively. The FC reaction is slow, which is followed by a fast C?H/C?O coupling.  相似文献   

8.
Described herein is an unprecedented access to BN‐polyaromatic compounds from 1,1′‐biphenylamines by sequential borane‐mediated C(sp2)?H borylation and intramolecular N‐demethylation. The conveniently in situ generated Piers’ borane from a borinic acid reacts with a series of N,N‐dimethyl‐1,1′‐biphenyl‐2‐amines in the presence of PhSiH3 to afford six‐membered amine‐borane adducts bearing a C(sp2)?B bond at the C2′‐position. These species undergo an intramolecular N‐demethylation with a B(C6F5)3 catalyst to provide BN‐isosteres of polyaromatics. According to computational studies, a stepwise ionic pathway is suggested. Photophysical characters of the resultant BN‐heteroarenes shown them to be distinctive from those of all‐carbon analogues.  相似文献   

9.
We report the novel single-step 1,2-dicarbofunctionalization of an arylacetylene with an allylsilane and tris(pentafluorophenyl)borane [B(C6F5)3] involving C−C bond formation with C−H bond scission at the β-position to the silicon atom of an allylsilane and B→C migration of a C6F5 group. The 1,2-carbopentafluorophenylation occurs smoothly without the requirement for a catalyst or heating. Mechanistic studies suggest that the metallomimetic “pull-push” reactivity of B(C6F5)3 imparts consecutive electrophilic and nucleophilic characteristics to the benzylic carbon of the arylacetylene. Subsequent photochemical 6π-electrocyclization affords tetrafluoronaphthalenes, which are important in the pharmaceutical and materials sciences. Owing to the unique reactivity of B(C6F5)3, the 1,2-carbopentafluorophenylation using 2-substituted furan proceeded with ring opening, and the reaction using silyl enolates formed a C−C bond with C−O bond scission at the silyloxy-substituted carbon.  相似文献   

10.
A chiral variant of B(C6F5)3 with a 3,3′‐disubstituted binaphthyl backbone is shown to catalyze Nazarov cyclizations with high levels of enantio‐ and diastereocontrol. The parent B(C6F5)3 also promotes these ring closures efficiently. This electrocyclization is another example of the still small family of C?C bond formations mediated by B(C6F5)3 as the catalyst.  相似文献   

11.
《化学:亚洲杂志》2018,13(18):2664-2670
A straightforward Lewis acid‐promoted protocol for 3,3′‐bisindolylmethanes (BIMs) synthesis by reductive alkylation of indoles at the C3 position with carboxylic acids in the presence of hydrosilane was developed for the first time. Instead of aldehydes, more readily available, stable, and easy‐to‐handle carboxylic acids have been employed as alternative alkylating agents. As an efficient organocatalyst, B(C6F5)3 enables the reductive alkylation of various substituted indole derivatives with carboxylic acids with up to 98 % yield at room temperature and under neat conditions. This metal‐free strategy offers an alternative approach for the direct functionalization of indoles to BIMs with carboxylic acids and such protocol allows selective reduction of carboxylic acid to aldehyde in combination with C−C bond formation.  相似文献   

12.
A straightforward gram‐scale preparation of cyclohexa‐1,4‐diene‐based hydrogen cyanide (HCN) surrogates is reported. These are bench‐stable but formally release HCN and rearomatize when treated with Lewis acids. For BCl3, the formation of the isocyanide adduct [(CN)BCl3]? and the corresponding Wheland complex was verified by mass spectrometry. In the presence of 1,1‐di‐ and trisubstituted alkenes, transfer of HCN from the surrogate to the C?C double bond occurs, affording highly substituted nitriles with Markovnikov selectivity. The success of this transfer hydrocyanation depends on the Lewis acid employed; catalytic amounts of BCl3 and (C6F5)2BCl are shown to be effective while B(C6F5)3 and BF3?OEt2 are not.  相似文献   

13.
A series of propargyl amides were prepared and their reactions with the Lewis acidic compound B(C6F5)3 were investigated. These reactions were shown to afford novel heterocycles under mild conditions. The reaction of a variety of N‐substituted propargyl amides with B(C6F5)3 led to an intramolecular oxo‐boration cyclisation reaction, which afforded the 5‐alkylidene‐4,5‐dihydrooxazolium borate species. Secondary propargyl amides gave oxazoles in B(C6F5)3 mediated (catalytic) cyclisation reactions. In the special case of disubstitution adjacent to the nitrogen atom, 1,1‐carboboration is favoured as a result of the increased steric hindrance (1,3‐allylic strain) in the 5‐alkylidene‐4,5‐dihydrooxazolium borate species.  相似文献   

14.
We report herein that the reaction between a series of Hantzsch’s ester analogues 1 a – d with the Lewis acidic species B(C6F5)3 results in facile transfer of hydride to boron. The main products of this reaction are pyridinium borohydride salts 2 a – d , which are obtained in high to moderate yields. The N‐substituted substrates (N‐Me, N‐Ph) reacted in high yield 90–98 % and the connectivity of the products were confirmed by an X‐ray crystallographic analysis of the N‐Me borohydride salt 2 a . Unsubstituted Hanztsch’s ester 1 a reacted less effectively generating only 60 % of the corresponding borohydride salt, with the balance of the material sequestered as the ester‐bound Lewis acid–base adduct 3 a . Formation of the Lewis acid–base adduct could be minimized by increasing the steric bulk about the ester groups as in 1 d . The connectivity of the carbonyl‐bound adduct was confirmed by an X‐ray crystallographic analysis of 3 e the product of the reaction of methyl ketone 1 e with B(C6F5)3. We also explored the generation of these pyridinium salts by employing frustrated Lewis pair methodology. However, the reaction of mixtures of the corresponding pyridine and B(C6F5)3 with hydrogen gas only resulted in formation of trace amounts of the pyridinium borohydride, along with the Lewis acid–base adduct of the starting material and B(C6F5)3. The 1,2‐dihydropyridine adduct was the final product of this reaction. This was ascribed to the low basicity of the pyridine nitrogen and the complicating formation of an ester bound Lewis acid–base adduct.  相似文献   

15.
A diverse range of Lewis acidic alkyl, vinyl and aryl boranes and borenium compounds that are capable of new carbon–carbon bond formation through selective migratory group transfer have been synthesised. Utilising a series of heteroleptic boranes [PhB(C6F5)2 ( 1 ), PhCH2CH2B(C6F5)2 ( 2 ), and E‐B(C6F5)2(C6F5)C=C(I)R (R=Ph 3 a , nBu 3 b )] and borenium cations [phenylquinolatoborenium cation ([QOBPh][AlCl4], 4 )], it has been shown that these boron‐based compounds are capable of producing novel allyl‐ boron and boronium compounds through complex rearrangement reactions with various propargyl esters and carbamates. These reactions yield highly functionalised, synthetically useful boron substituted organic compounds with substantial molecular complexity in a one‐pot reaction.  相似文献   

16.
The N‐heterocyclic plumbylene [Fe{(η5‐C5H4)NSiMe3}2Pb:] is in equilibrium with an unprecedented dimer in solution, whose formation involves the cleavage of a strong C?H bond and concomitant formation of a Pb?C and an N?H bond. According to a mechanistic DFT assessment, dimer formation does not involve direct PbII insertion into a cyclopentadienyl C?H bond, but is best described as an electrophilic substitution. The bulkier plumbylene [Fe{(η5‐C5H4)NSitBuMe2}2Pb:] shows no dimerization, but compensates its electrophilicity by the formation of an intramolecular Fe?Pb bond.  相似文献   

17.
Frustrated Lewis pairs (FLPs) based on sterically encumbered anilines and the Lewis acid B(C6F5)3 were found to react with terminal alkynes effecting intermolecular hydroamination affording iminium alkynylborate species of the form [RPhN?C(R′)Me][R′CCB(C6F5)3]. In these cases, the reagent ratio of borane, aniline, and alkyne is 1:1:2. These reactions could also be performed in an intramolecular fashion by using anilines with alkynyl substituents effecting cyclization reactions. The use of 10 mol % B(C6F5)3 under a H2 atmosphere provides a one‐pot synthesis of the pyrrolidine 12 , the piperidines 13 – 15 , the azepane 16 , the isoindoline 17 , and the benzoxazine 18 .  相似文献   

18.
S‐Nitrosothiols (RSNOs) serve as air‐stable reservoirs for nitric oxide in biology. While copper enzymes promote NO release from RSNOs by serving as Lewis acids for intramolecular electron‐transfer, redox‐innocent Lewis acids separate these two functions to reveal the effect of coordination on structure and reactivity. The synthetic Lewis acid B(C6F5)3 coordinates to the RSNO oxygen atom, leading to profound changes in the RSNO electronic structure and reactivity. Although RSNOs possess relatively negative reduction potentials, B(C6F5)3 coordination increases their reduction potential by over 1 V into the physiologically accessible +0.1 V vs. NHE. Outer‐sphere chemical reduction gives the Lewis acid stabilized hyponitrite dianion trans‐[LA‐O‐N=N‐O‐LA]2? [LA=B(C6F5)3], which releases N2O upon acidification. Mechanistic and computational studies support initial reduction to the [RSNO‐B(C6F5)3] radical anion, which is susceptible to N?N coupling prior to loss of RSSR.  相似文献   

19.
In recent years ‘frustrated Lewis pairs’ (FLPs) have been shown to be effective metal‐free catalysts for the hydrogenation of many unsaturated substrates. Even so, limited functional‐group tolerance restricts the range of solvents in which FLP‐mediated reactions can be performed, with all FLP‐mediated hydrogenations reported to date carried out in non‐donor hydrocarbon or chlorinated solvents. Herein we report that the bulky Lewis acids B(C6Cl5)x(C6F5)3?x (x=0–3) are capable of heterolytic H2 activation in the strong‐donor solvent THF, in the absence of any additional Lewis base. This allows metal‐free catalytic hydrogenations to be performed in donor solvent media under mild conditions; these systems are particularly effective for the hydrogenation of weakly basic substrates, including the first examples of metal‐free catalytic hydrogenation of furan heterocycles. The air‐stability of the most effective borane, B(C6Cl5)(C6F5)2, makes this a practically simple reaction method.  相似文献   

20.
The strong boron Lewis acid tris(pentafluorophenyl)borane, B(C6F5)3, is shown to abstract a hydride from suitably donor‐substituted cyclohexa‐1,4‐dienes, eventually releasing dihydrogen. This process is coupled with the FLP‐type (FLP=frustrated Lewis pair) hydrogenation of imines and nitrogen‐containing heteroarenes that are catalyzed by the same Lewis acid. The net reaction is a B(C6F5)3‐catalyzed, i.e., transition‐metal‐free, transfer hydrogenation using easy‐to‐access cyclohexa‐1,4‐dienes as reducing agents. Competing reaction pathways with or without the involvement of free dihydrogen are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号