首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The current response of the collision of ascorbic acid‐stabilized copper (Cu) single nanoparticles (NPs) on a gold (Au) ultramicroelectrode (UME) surface was observed by using an electrocatalytic amplification method. Here, the glucose oxidation electrocatalyzed by oxidized Cu NPs was used as the indicating reaction. In this system, the NP collision signals were obtained simultaneously by both direct particle electrolysis and electrocatalytic amplification. For example, when the applied potential was high enough for Cu NP oxidation, a blip response combined with a staircase response was observed as a current signal. The blip part in the single Cu NP collision signal indicates the self‐oxidation of a Cu NP, and the staircase part indicates the steady‐state electrocatalytic reaction by oxidized Cu NP.  相似文献   

2.
We investigated the electrochemical detection of single iridium oxide nanoparticle (IrO(x) NP) collisions at the NaBH(4)-treated Pt ultramicroelectrode (UME) in a scanning electrochemical microscope (SECM) over an insulating surface. The NP collision events were monitored by observing the electrocatalytic water oxidation reaction at potentials where it does not take place on the Pt UME. These collisions occurred stochastically, resulting in a transient response ("blip") for each collision. The frequency of the collisions is proportional to the flux of NPs to the UME tip, and thus equivalent to the SECM current. A plot of collision frequency versus distance followed the theoretical approach curve behavior for negative feedback for a high concentration of mediator, demonstrating that the collisions were diffusion-controlled and that single-particle measurements of mass transport are equivalent to ensemble ones. When the SECM was operated with a Pt substrate at the same potential as the tip, the behavior followed that expected of the shielding mode. These studies and additional ones result in a model where the IrO(x) NP collision on the Pt UME is adsorptive, with oxygen produced by the catalyzed water oxidation causing a current decay. This results in a blip current response, with the current decay diminished in the presence of the oxygen scavenger, sulfite ion. Random walk and theoretical bulk simulations agreed with the proposed mechanism of IrO(x) NP collision, adsorption, and subsequent deactivation.  相似文献   

3.
Single Pt nanoparticle (NP) collisions on an electrode surface were detected by using an electrocatalytic amplification method with a Pd ultramicroelectrode (UME). Pd is not a preferred material for UMEs for the detection of single Pt NP collisions, because Pd shows similar electrocatalytic activity compared with Pt for hydrazine oxidation, thus resulting in a high background current level. However, a Pt NP colliding on the Pd UME shows greatly enhanced activity compared with a Pt NP on an inert UME, such as a Au UME, which is usually used for the detection of single Pt NP collisions. The use of an electroactive UME material instead of an inert one facilitated the study of single‐NP activity on the various solid supports, which is important in many NP applications.  相似文献   

4.
This study demonstrates a highly sensitive sensing scheme for the detection of low concentrations of DNA, in principle down to the single biomolecule level. The previously developed technique of electrochemical current amplification for detection of single nanoparticle (NP) collisions at an ultramicroelectrode (UME) has been employed to determine DNA. The Pt NP/Au UME/hydrazine oxidation reaction was employed, and individual NP collision events were monitored. The Pt NP was modified with a 20-base oligonucleotide with a C6 spacer thiol (detection probe), and the Au UME was modified with a 16-base oligonucleotide with a C6 spacer thiol (capture probe). The presence of a target oligonucleotide (31 base) that hybridized with both capture and detection probes brought a Pt NP on the electrode surface, where the resulting electrochemical oxidation of hydrazine resulted in a current response.  相似文献   

5.
We have demonstrated electrochemical detection of reduced graphene oxide (rGO) nanoparticles on an ultramicroelectrode (UME) in aqueous solution using rGO collision events. The collision phenomena are detected by monitoring a current–time transient. To attract the rGO to the UME surface, a positive electric field was developed near the UME using a redox reaction. As model systems, ferrocenemethanol and ferrocyanide oxidation reactions were adopted. Amperometric current measurements showed a staircase current response after attachment of rGO on the UME surface. The magnitude of the staircase current is given by the stepwise increase in current, which can provide insight into the size distribution of the rGO colliding with the UME. In the presence of higher concentrations of rGO, multiple collision events happened sequentially on the UME. In this case, an increasing current trend, rather than a single staircase current, was observed. The overall current increment for a given time is a measure of the concentration of rGO in solution. By using this method, charged conductive materials in an aqueous solution can be sensitively detected and/or accumulated.  相似文献   

6.
Direct electrochemical characterization of freely moving nanoparticles (NPs) at the individual particle level is challenging. A method is presented that can achieve this goal based on the collision between a NP and an ultramicroelectrode (UME). By applying a sinusoidal potential to the UME and monitoring the current response in the frequency domain, a sudden change in the phase angle indicates the arrival of a NP at the UME. The response induced by the collision can be isolated and used to explore the properties of the NP. This method, analogous to a high‐speed camera, can obtain a snapshot of the properties of the single NP at the moment of a collision. The proposed method was employed to investigate the properties of both the hard catalytic Pt NP and soft electroactive emulsion droplets, and many new insights were revealed thereafter. The method also has the potential to be applied in many other fields, where the interested signals appear as discrete events.  相似文献   

7.
Collisions of several kinds of metal or metal oxide single nanoparticles (NPs) with a less catalytic electrode surface have been observed through amplification of the current by electrocatalysis. Two general types of current response, a current staircase or a current blip (or spike) are seen with particle collisions. The current responses were caused by random individual events as a function of time rather than the usual continuous current caused by an ensemble of a large number of events. The treatment of stochastic electrochemistry like single NP collisions is different from the usual model for ensemble-based electrochemical behaviour. Models for the observed responses are discussed, including simulations, and the frequency of the steps or blips investigated for several systems experimentally.  相似文献   

8.
开发了一种磁性Fe3O4纳米粒子和2-(3,4-二羟苯基)苯并噻唑(DPB)修饰的磁性棒碳糊电极(MBCPE)用于电化学检测肼.首先将DPB自组装在Fe3O4纳米粒子上,然后将此复合物吸附于设计的MBCPE上. MBCPE电极将磁性纳米粒子吸引到电极表面.所得新型电极具有高的导电性和大的有效比表面积,因而对肼的电催化氧化反应有非常大的电流响应.采用伏安法、扫描电镜、电化学阻抗谱、红外光谱和紫外-可见光谱对修饰电极进行了表征.采用伏安法研究了在磷酸盐缓冲溶液(pH=7.0)中MBCPE/Fe3O4NPs/DPB电极上肼的电化学行为.作为电化学传感器, MBCPE/Fe3O4NPs/DPB电极对肼氧化反应表现出极高的电催化活性.在DPB存在下,肼的氧化电势下降,但其催化电流增加.电催化电流与肼浓度在0.1–0.4和0.7–12.0μmol/L二个区间内表现出线性关系,检测限为18.0 nmol/L.另外,研究了MBCPE/Fe3O4NPs/DPB电极同时检测肼和苯酚的性能.伏安实验结果显示,苯酚的线性区域为100–470μmol/L,检测限为24.3μmol/L.采用此电极检测了水样品中的肼和苯酚.  相似文献   

9.
Chronoamperometry was used to study the dynamics of Pt nanoparticle (NP) collision with an inert ultramicroelectrode via electrocatalytic amplification (ECA) in the hydrogen evolution reaction. ECA and dynamic light scattering (DLS) results reveal that the NP colloid remains stable only at low proton concentrations (1.0 mm ) under a helium (He) atmosphere, ensuring that the collision events occur at genuinely single NP level. Amperometry of single NP collisions under a He atmosphere shows that each discrete current profile of the collision event evolves from spike to staircase at more negative potentials, while a staircase response is observed at all of the applied potentials under hydrogen‐containing atmospheres. The particle size distribution estimated from the diffusion‐controlled current in He agrees well with electron microscopy and DLS observations. These results shed light on the interfacial dynamics of the single nanoparticle collision electrochemistry.  相似文献   

10.
We observed the collision of single Pt nanoparticles (NPs) onto an Au nanowire (NW) electrode by using electrocatalytic amplification. Previously, such observations had typically been performed by using a microscale disk‐type ultramicroelectrode (UME). The use of a NW electrode decreased the background noise current and provided a shielding effect, owing to adsorption of the NPs onto the insulating sheath. Therefore, the transient current signal that was caused by the collision of single NPs could be more clearly distinguished from the background current by using a NW electrode instead of a UME. Furthermore, the use of a NW electrode increased the collisional frequency and the magnitude of the transient current signal. The experimental data were analyzed by using a theoretical model and a random walk simulation model.  相似文献   

11.
Networks of pristine single walled carbon nanotubes (SWNTs) grown by catalysed chemical vapour deposition (cCVD) on an insulating surface and arranged in an ultramicroelectrode (UME) format are insensitive to the electro-oxidation of hydrazine (HZ) in aqueous solution, indicating a negligible metallic nanoparticle content. Sensitisation of the network towards HZ oxidation is promoted by the deliberate and controlled electrodeposition of "naked" gold (Au) nanoparticles (NPs). By controlling the deposition conditions (potential, time) it is possible to control the size and spacing of the Au NPs on the underlying SWNT network. Two different cases are considered: Au NPs at a number density of 250 ± 13 NPs μm(-2) and height 24 nm ± 5 (effective surface coverage, θ = 92%) and (ii) Au NPs of number density ~ 22 ± 3 NPs μm(-2) and height 43 nm ± 8 nm (θ = 35%). For both morphologies the HZ oxidation half-wave potential (E(1/2)) is shifted significantly negative by ca. 200 mV, compared to a gold disc UME of the same geometric area, indicating significantly more facile electron transfer kinetics. E(1/2) for HZ oxidation for the higher density Au NP-SWNT structure is shifted slightly more negative (by ~25 mV) than E(1/2) for the lower density Au NP electrode. This is attributed to the lower flux of HZ at NPs in the higher number density arrangement (smaller kinetic demand). Importantly, using this approach, the calculated HZ oxidation current density sensitivities for the Au NP-SWNT electrodes reported here are higher than for many other metal NP functionalised carbon nanotube electrodes.  相似文献   

12.
孙琳琳  王伟  陈洪渊 《电化学》2019,25(3):386-399
近年来,单颗粒碰撞技术在纳米电化学领域受到广泛关注. 该技术通常控制超微电极处于某一电位,检测单个纳米颗粒随机碰撞到电极表面后产生的瞬时电流. 通过分析电流信号,可以研究单个纳米颗粒的性质. 尽管该技术可以检测单个纳米颗粒的电化学或电催化电流,但是传统的单颗粒碰撞技术缺乏空间分辨率,难以识别和表征特定的纳米颗粒. 因此,结合光学成像技术研究单颗粒碰撞电化学来补充电化学技术缺失的空间信息已成为一种趋势. 本文首先简要综述了单颗粒碰撞技术的三种检测原理,主要介绍了近年来单颗粒碰撞技术与荧光显微镜、表面等离激元共振显微镜、全息显微镜和电致化学发光相结合的研究进展,最后展望了单颗粒碰撞技术未来的发展趋势.  相似文献   

13.
通过静电作用在Nafion和Au-Nafion纳米粒子(NPs)上负载钌联吡啶(Ru(bpy)32+)分别制得Nafion@Ru和Au-Nafion@Ru NPs.分析并比较了Au-Nafion@Ru和Nafion@Ru NPs在金超微电极(Au UME)上随机碰撞产生电流响应峰的平均峰大小、峰电量和单峰持续时间,建立...  相似文献   

14.
Electrocatalysis of water oxidation by 1.54 nm IrOx nanoparticles (NPs) immobilized on spectroscopic graphite electrodes was demonstrated to proceed with a higher efficiency than on all other, hitherto reported, electrode supports. IrOx NPs were electrodeposited on the graphite surface, and their electrocatalytic activity for water oxidation was correlated with the surface concentrations of different redox states of IrOx as a function of the deposition time and potential. Under optimal conditions, the overpotential of the reaction was reduced to 0.21 V and the electrocatalytic current density was 43 mA cm?2 at 1 V versus Ag/AgCl (3 M KCl) and pH 7. These results beneficially compete with previously reported electrocatalytic oxidations of water by IrOx NPs electrodeposited onto glassy carbon and indium tin oxide electrodes and provide the basis for the further development of efficient IrOx NP‐based electrocatalysts immobilized on high‐surface‐area carbon electrode materials.  相似文献   

15.
The electrochemical oxidation of single colloidal Ag nanoparticles (NPs) at an electrode surface has previously been studied as an in situ particle-sizing methodology. However, the discovery of multipeak amperometric behavior in 2017 sparked new interest toward understanding the precise physical mechanism of the manner in which a freely diffusing Ag NP interacts with the electrode surface. Random walk simulations, unique electrochemical experiments, and correlated optical/spectroscopic techniques have revealed exciting new results regarding the physical and chemical processes occurring on single NP collision.  相似文献   

16.
Single nanoparticle (NP) collisions were successfully observed by a potentiometric measurement. The open circuit potential (OCP) of a measuring Au ultramicroelectrode (UME) changes when Pt NPs collide with the UME in a hydrazine solution. The OCP change is related to the redox processes, the concentration of particles, particle size, and electrode size. Compared with the amperometric technique, this approach has several advantages: higher sensitivity, simpler apparatus, fewer problems with NP decomposition, and contamination.  相似文献   

17.
Conductive polymeric [NiII(teta)]2+ (teta=C‐meso‐5,5,7,12,12,14‐hexamethyl‐1,4,8,11‐tetra‐azacyclotetradecane) films (poly(Ni)) have been deposited on the surface of glassy carbon (GC), Nafion (Nf) modified GC (GC/Nf) and Nf stabilized Ag and Au nanoparticles (NPs) modified GC (GC/Ag‐Nf and GC/Au‐Nf) electrodes. The cyclic voltammogram of the resulting electrodes, show a well defined redox peak due to oxidation and reduction of poly(Ni) system in 0.1 M NaOH. They show electrocatalytic activity towards the oxidation of glucose. AFM studies reveal the formation of poly(Ni) film on the modified electrodes. Presence of metal NPs increases electron transfer rate and electrocatalytic oxidation current by improving the communication within the Nf and poly(Ni) films. In the presence of metal NPs, 4 fold increase in current for glucose oxidation was observed.  相似文献   

18.
Electrocatalytic oxidation of hydrazine was investigated on a cobalt hydroxide modified glassy carbon (CHM-GC) electrode in alkaline solution. The process of oxidation involved and its kinetics were established by using cyclic voltammetry, chronoamperometry techniques as well as steady state polarization measurements. In cyclic voltammetry (CV) studies, in the presence of hydrazine the peak current increase of the oxidation of cobalt hydroxide is followed by a decrease in the corresponding cathodic current. This indicates that hydrazine is oxidized on the redox mediator that is immobilized on the electrode surface via an electrocatalytic mechanism. A mechanism based on the electrochemical generation of Co(IV) active sites and their subsequent consumption by the hydrazine in question was also investigated.  相似文献   

19.
应用电化学循环伏安法,以银作工作电极研究了水合肼在离子液体BmimPF6中的氧化过程.结果显示,银离子对水合肼的氧化过程具有催化作用,其氧化峰电位0.16V(vs.SCE)电催化反应速率决定步骤为1电子的氧化还原过程.在0~3.4mmol/L肼浓度范围内,催化反应峰电流与肼浓度间具有良好的线性关系.  相似文献   

20.
The interaction between silver nanoparticles (Ag NPs) of different surface charge and surfactants relevant to the laundry cycle has been investigated to understand changes in speciation, both in and during transport from the washing machine. Ag NPs were synthesized to exhibit either a positive or a negative surface charge in solution conditions relevant for the laundry cycle (pH 10 and pH 7). These particles were characterized in terms of size and surface charge and compared to commercially laser ablated Ag NPs. The surfactants included anionic sodium dodecylbenzenesulfonate (LAS), cationic dodecyltrimethylammoniumchloride (DTAC) and nonionic Berol 266 (Berol). Surfactant-Ag NP interactions were studied by means of dynamic light scattering, Raman spectroscopy, zeta potential, and Quartz Crystal Microbalance. Mixed bilayers of CTAB and LAS were formed through a co-operative adsorption process on positively charged Ag NPs with pre-adsorbed CTAB, resulting in charge reversal from positive to negative zeta potentials. Adsorption of DTAC on negatively charged synthesized Ag NPs and negatively charged commercial Ag NPs resulted in bilayer formation and charge reversal. Weak interactions were observed for nonionic Berol with all Ag NPs via hydrophobic interactions, which resulted in decreased zeta potentials for Berol concentrations above its critical micelle concentration. Differences in particle size were essentially not affected by surfactant adsorption, as the surfactant layer thicknesses did not exceed more than a few nanometers. The surfactant interaction with the Ag NP surface was shown to be reversible, an observation of particular importance for hazard and environmental risk assessments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号