首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study describes the synthesis of PdCu, PdCu/reduced graphene oxide and PtPdCu nanoparticle thin films via a simple reduction of organometallic precursors including [PtCl2(cod)] and [PdCl2(cod)] (cod = cis ,cis ‐1,5‐cyclooctadiene) complexes, in the presence of [Cu(acac)2] (acac = acetylacetonate) complex at toluene–water interface. The structure and morphology of the thin films were characterized using energy‐dispersive analysis of X‐rays, X‐ray diffraction and transmission electron microscopy techniques. Our studies show that all of these nanoparticles are suitable for the Suzuki–Miyaura coupling (SMC) reaction in water. PtPdCu and PdCu thin films showed higher catalytic activity compared to Pd thin film in the SMC reaction due to the appropriate interaction among palladium, platinum and copper metals.  相似文献   

2.
A new palladium(II) complex containing two sterically hindered ligands, a P,P‐bonded diphosphine and N,N‐bonded Schiff base, within the same coordination sphere has been synthesized and investigated as a catalyst for the Suzuki–Miyaura cross‐coupling reactions of aryl halides with arylboronic acids. The reaction was highly efficient with aryl bromides in water at room temperature and aryl chlorides in dimethylformamide under relatively mild conditions. Excellent yields of coupling products were obtained for a wide range of aryl halides including heteroaryl halides with a low loading of catalyst. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A porphyrin‐based polymer with high surface area was synthesized using 5,10,15,20‐tetraphenylporphyrin through a one‐pot Friedel–Crafts alkylation reaction. Pd(II) was successfully supported on this polymer. This strategy provides an easy approach to produce highly stable Pd–porphyrin‐based polymer. The resulting Pd catalyst was characterized using Fourier transform infrared and X‐ray photoelectron spectroscopies, thermogravimetric analysis, scanning and transmission electron microscopies and N2 adsorption–desorption measurements. This porphyrin‐based polymer‐supported Pd was used as a heterogeneous catalyst for Suzuki–Miyaura coupling reaction in water. The results demonstrated that this Pd catalyst indeed exhibited excellent catalytic activity and recycling performance in water, even for inactive aryl chloride substrate. A new heterogeneous strategy for catalyzing the Suzuki–Miyaura reaction in water is provided.  相似文献   

4.
An efficient catalytic system for Suzuki–Miyaura coupling reactions in neat water has been developed by using a water‐soluble Pd(l ‐proline)2 catalyst. Under the optimized conditions, various biaryl compounds were obtained in good to excellent yields and a wide range of functional groups on the tested substrates were well tolerated. The catalytic system could be reused at least six times with no significant loss in its activity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Poly(N‐isopropylacrylamide)–halloysite (PNIPAM‐HNT) nanocomposites exhibited inverse temperature solubility with a lower critical solution temperature (LCST) in water. Palladium (Pd) nanoparticles were anchored on PNIPAM‐HNT nanocomposites with various amounts of HNT from 5 to 30 wt%. These Pd catalysts exhibited excellent reactivities for Suzuki–Miyaura coupling reactions at 50–70 °C in water. In particular, Pd anchored PNIPAM/HNT (95:5 w/w ratio) nanocomposites showed excellent recyclability up to 10 times in 96% average yield by simple filtration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A series of pyridylbenzamidine ligands were applied in palladium‐catalyzed Suzuki–Miyaura reactions and the effect of ligand on catalytic properties was evaluated. Under the optimization conditions, the bulky and electron‐donating nitrogen donor ligands were successfully used to catalyze the reaction of a variety of aryl bromides and aryl chlorides with arylboronic acid, giving the desired products in moderate to high yields. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Seeing the sites : The Suzuki–Miyaura reaction of substrates containing multiple coupling sites has been performed in a directed manner through the reactivity modulation of the boron moiety (see scheme). Several other strategies are also discussed.

  相似文献   


8.
The catalytic activity of three acetanilide palladacycles derived from easily accessible and commercially available acetanilide derivatives, viz. N‐phenylacetamide ( L1 ), N‐(4‐chlorophenyl)acetamide ( L2 ) and N‐(4‐methylphenyl)acetamide ( L3 ) has been examined in Pd‐catalyzed Suzuki–Miyaura reaction of arylboronic acid with aryl bromides at room temperature. The complex 1L3 exhibited efficient activity in the Suzuki–Miyaura reaction (up to 99% isolated yield) under mild reaction conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Graphene oxide was functionalized with benzimidazole for palladium immobilization. The resultant graphene–benzimidazole‐supported palladium composite (G‐BI‐Pd) was characterized using infrared and Raman spectroscopies, transmission electron microscopy and energy‐dispersive X‐ray spectroscopy. G‐BI‐Pd showed excellent catalytic activity and fast reaction kinetics in the aqueous‐phase Suzuki–Miyaura reaction of aryl iodides and bromides with phenylboronic acid under relatively mild conditions (5–25 min, 80 °C). The catalyst can be used several times without any significant loss of its catalytic activity.  相似文献   

10.
Nanosheet of PdNiZn and nanosphere of PdNiZn/reduced‐graphene oxide (RGO) with sub‐3 nm spheres have been successfully synthesized through a facile oil‐water interfacial strategy. The morphology and composition of the films were determined by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive analysis of X‐ray (EDAX) and elemental mapping. In the present study, we have developed a method to minimize the usage of precious Pd element. Due to the special structure and intermetallic synergies, the PdNiZn and PdNiZn/RGO nanoalloys exhibited enhanced catalytic activity and durability relative to Pd nanoparticles in Suzuki‐Miyaura C‐C cross‐coupling reaction. Compared to classical cross‐coupling reactions, this method has the advantages of a green solvent, short reaction times, low catalyst loading, high yields and reusability of the catalysts.  相似文献   

11.
The shape sensitivity of Pd catalysts in Suzuki–Miyaura coupling reactions is studied using nanocrystals enclosed by well‐defined surface facets. The catalytic performance of Pd nanocrystals with cubic, cuboctahedral and octahedral morphologies are compared. Superior catalytic reactivity is observed for Pd NCs with {100} surface facets compared to {111} facets. The origin of the enhanced reactivity associated with a cubic morphology is related to the leaching susceptibility of the nanocrystals. Molecular oxygen plays a key role in facilitating the leaching of Pd atoms from the surface of the nanocrystals. The interaction of O2 with Pd is itself facet‐dependent, which in turn gives rise to more efficient leaching from {100} facets, compared to {111} facets under the reaction conditions.  相似文献   

12.
This work reports Suzuki–Miyaura cross‐coupling reactions of arylboronic acid with aryl halide or aryl dibromide mediated by PdCl2 (0.05 mol%) and sodium 4‐(1H‐imidazo[4,5‐f][1,10]phenanthrolin‐1‐yl)butane‐1‐sulfonate (0.05 mol%) at 100 °C in water. The corresponding cross‐coupling products were obtained in good to excellent yields. The catalytic system was recovered from the organic products by extraction with ether and the residual aqueous catalyst phase showed high activity after reuse of at least four cycles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Metallomicelles of palladium(II) complex 4 are found to be an efficient catalyst for Suzuki–Miyaura reactions of aryl bromides substituted with a long alkyl chain and arylboronic acids at 80 °C in neat water. The reactions proceed smoothly to generate the corresponding biaryl compounds in moderate to excellent yields. Various biphenyl derivatives were successfully obtained by complex 4 catalysis of the Suzuki–Miyaura reactions in the absence of any surfactants in neat water. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The Suzuki–Miyaura reaction of aryl bromides with benzeneboronic acid catalyzed by bis(chloro)(2‐pyridylquinoxaline)palladium(II) was investigated. The scope of the bis(chloro)(2‐pyridylquinoxaline)palladium(II) was determined in toluene at 80 °C using KOH as base. Using a 0.1% molar ratio of bis(chloro)(2‐pyridylquinoxaline)palladium(II) C1 as a catalyst, aryl bromides reacted with benzeneboronic acid to afford diaryl derivatives in excellent yield. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The complexes formed by combining Pd(OAc)2 and iminophosphine ligands (P^N) are active catalysts in Suzuki–Miyaura cross-coupling reactions under mild conditions. Aryl bromides and iodides, as well as benzyl chlorides give the corresponding coupled products in high yields at low temperatures (25–50 °C) using these catalysts. Iminophosphines containing the most sterically demanding groups attached to the N-imino moiety were the most effective ligands. New divalent Pd complexes of known iminophosphines were synthesised and their activity was compared with the in situ generated catalyst system. The complex resulting from the oxidative addition of 4-bromo anisole [Pd(4-CH3OC6H4)Br(P^N)] was more active than the in situ generated system. However, palladacycles containing the iminophosphine ligand (e.g., {[C6H4CH(Me)2St-Bu]Pd(P^N)}+PF6) were less active than the in situ generated catalyst due to the greater stability of the complexes that involve two bidentate ligands. Poisoning tests demonstrated that homogeneous mononuclear palladium species containing the iminophsophine ligand were responsible for the catalytic activity.  相似文献   

16.
A new and efficient nanoparticle–N‐heterocyclic carbene–palladium complex was synthesized and characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, field emission scanning electron microscopy, energy‐dispersive X‐ray analysis, X‐ray diffraction, transmission electron microscopy, elemental analysis, inductively coupled plasma analysis and vibrating sample magnetometry. This catalytic system was found to be a highly active catalyst in the Mizoroki–Heck and Suzuki–Miyaura cross‐coupling reactions. These reactions were best performed in dimethylformamide and water, respectively, in the presence of only 0.054 mol% of palladium under mild conditions. Moreover, the catalyst could be recovered easily and reused at least ten times without any considerable loss of its catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Aryl halides and especially inactive aryl chlorides were coupled to benzenoid aromatic rings in a Suzuki–Miyaura coupling reaction in the absence of organic solvents and toxic phosphine ligands. The reaction was catalysed by a recoverable magnetic nanocatalyst, Pd@Fe3O4, in aqueous media. This method is green, and the catalyst is easily removed from the reaction media using an external magnetic field and can be re‐used at least 10 times without any considerable loss in its activity. The catalyst was characterized using scanning and transmission electron microscopies, thermogravimetric analysis, inductively coupled plasma spectroscopy, Fourier transform infrared spectroscopy, CHN analysis, X‐ray diffraction and vibrating sample magnetometry.  相似文献   

18.
Functionalized natural polysaccharides are attractive supports for colloidal metal nanocatalysts due to their abundance, cheapness, biocompatibility and biodegradability. In this study, isocyanate–functionalized starch was prepared by treating with diisocyanate. Polyethylenimine grafted onto starch via the formation of urea linker. The palladium nanoparticles deposited starch PEIS@Pd(0) was obtained through a chelating–in situ reduction procedure. Characterization of these materials was done using Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X–ray diffraction, and inductive coupled plasma atomic emission spectrometry. The catalytic activity of PEIS@Pd(0) was then tested in two series of model reactions: Suzuki–Miyaura coupling and transfer hydrogenation. The catalyst could be recovered by simple filtration and was reused for five times without significant loss of catalytic activity, which confirmed the good stability of the catalyst.  相似文献   

19.
A novel palladium(II) carboxymethylcellulose (CMC‐PdII) was prepared by direct metathesis from sodium carboxymethylcellulose and PdCl2 in aqueous solution. Its catalytic activities were explored for Heck–Matsuda reactions of aryldiazonium tetrafluoroborate with olefins, and Suzuki–Miyaura couplings of aryldiazonium tetrafluoroborate with arylboronic acid. Both reactions proceeded at room temperature in water or aqueous ethanol media without the presence of any ligand or base, to provide the corresponding cross‐coupling products in good to excellent yields under atmospheric conditions. The CMC‐PdII and carboxymethylcellulose‐supported palladium nanoparticles (CMC‐Pd0) formed in situ in the reactions were characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, inductively coupled plasma atomic emission spectrometry, and scanning and transmission electron microscopies. The homogeneous nature of the CMC‐Pd0 catalyst was confirmed via Hg(0) and CS2 poisoning tests. Moreover, the CMC‐Pd0 catalyst could be conveniently recovered by simple filtration and reused for at least ten cycles in Suzuki–Miyaura reactions without apparently losing its catalytic activity. The catalytic system not only overcomes the basic drawbacks of homogeneous catalyst recovery and reuse but also avoids the need to fabricate palladium nanoparticles in advance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The palladacycle complex [LsPdOAc]2 bearing 2‐phenyl benzothiazole was synthesized and characterized by NMR and X‐ray crystallography. [LsPdOAc]2 was used as a catalyst in the Suzuki–Miyaura cross coupling reaction of 4‐bromotoluene with phenylboronic acid, which resulted in a conversion of >90% with 5 mol% of the Pd complex within 10 min at 60°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号