首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— ESR and photovoltaic studies on light-induced one-electron transfer between chlorophyll a and electron donors in the absence of oxygen show (1) the possible conversion of photo-reduced chlorophyll a and p-benzosemiquinone ion radicals to their non-ionic radicals in methanol solutions of low pH, (2) the production of ESR absorption of tetrachloro-p-benzosemi-quinone even in benzene, enhanced by the addition of triethylamine or methanol, and (3) the transfer of one electron from tetramethyl-p-phenylenediamine to either excited chlorophyll a or pheophytin a in methanol at pH above 3.6 but not to pheophytin a at pH below 1 0 where its radical cation appears to accept an electron from excited pheophytin a . Bacteteriochloro-phyll is also shown to be capable of photooxidizing hydroquinones and tetramethyl-p-phenyl-enediamine.
The presence of oxygen enhances chlorophyll a -photosensitized oxidation of hydroquinone and tetrachloro-hydroquinone by one-electron transfer to oxygen and of trimethylhydro-quinone probably by two-electron trnasfer to oxygen. A free radical from excited chlorophyll a-oxygen interaction is formed in these reactions, but rapidly quenched in the case of trimethyl-hydroquinone. This, kind of free radical is not formed in pheophytin a . Tetramethyl- p -phenyl-enediamine readily undergoes chlorophyll a-photosensitized oxidation by oxygen in any pH region.  相似文献   

2.
Abstract— Semiconductors with a sufficiently large energy gap, in contact with an electrolyte, can be used as electrodes for the study of electrochemical reactions of excited molecules. The behavior of excited chlorophyll molecules at single crystal ZnO-electrodes has been investigated. These molecules inject electrons from excited levels into the conduction band of the electrode, thus giving rise to an anodic photocurrent. The influence of various agents on this electron transfer has been studied. In the presence of suitable electron donors (e.g., hydroquinone, phenylhydrazine) in the electrolyte chlorophyll molecules, absorbing quanta, mediate the pumping of electrons from levels of the reducing agents into the conduction band of the semiconductor-electron acceptor. The electron capture by the semiconductor electrode is irreversible, when an adequate electrochemical gradient is provided in the electrode surface. Some properties of excited chlorophyll at semiconductor electrodes (unidirectional electron transfer, highly efficient charge separation, chlorophyll as electron pump and able to convert electronic excitation into electric energy) show similarity to the behavior of chlorophyll in photosynthetic reaction centers.  相似文献   

3.
A novel energy-transfer system involving nonaggregated cationic porphyrins adsorbed on an anionic-type clay surface and the electron-transfer reaction that occurs after light harvesting are described. In the clay-porphyrin complexes, photochemical energy transfer from excited singlet zinc porphyrins to free-base porphyrins proceeds. The photochemical electron-transfer reaction from an electron donor in solution (hydroquinone) to the adsorbed porphyrin in the excited singlet state was also examined. Because the electron-transfer rate from the hydroquinone to the excited singlet free-base porphyrin is larger than that to the excited singlet zinc porphyrin, we conclude that the energy transfer accelerates the overall electron-transfer reaction.  相似文献   

4.
In many of the chemical steps in photosynthesis and artificial photosynthesis, proton coupled electron transfer (PCET) plays an essential role. An important issue is how excited state reactivity can be integrated with PCET to carry out solar fuel reactions such as water splitting into hydrogen and oxygen or water reduction of CO2 to methanol or hydrocarbons. The principles behind PCET and concerted electron–proton transfer (EPT) pathways are reasonably well understood. In Photosystem II antenna light absorption is followed by sensitization of chlorophyll P680 and electron transfer quenching to give P680+. The oxidized chlorophyll activates the oxygen evolving complex (OEC), a CaMn4 cluster, through an intervening tyrosine–histidine pair, YZ. EPT plays a major role in a series of four activation steps that ultimately result in loss of 4e?/4H+ from the OEC with oxygen evolution. The key elements in photosynthesis and artificial photosynthesis – light absorption, excited state energy and electron transfer, electron transfer activation of multiple-electron, multiple-proton catalysis – can also be assembled in dye sensitized photoelectrochemical synthesis cells (DS-PEC). In this approach, molecular or nanoscale assemblies are incorporated at separate electrodes for coupled, light driven oxidation and reduction. Separate excited state electron transfer followed by proton transfer can be combined in single semi-concerted steps (photo-EPT) by photolysis of organic charge transfer excited states with H-bonded bases or in metal-to-ligand charge transfer (MLCT) excited states in pre-associated assemblies with H-bonded electron transfer donors or acceptors. In these assemblies, photochemically induced electron and proton transfer occur in a single, semi-concerted event to give high-energy, redox active intermediates.  相似文献   

5.
Abstract— In the photosynthesis model system described, chlorophyll a at an interface photosensitizes the transfer of hydrogen equivalents from a hydrocarbon phase to an aqueous phase. The hydrocarbon phase, to which chlorophyll is adsorbed, consists of polyethylene particles swollen with tetradecane. The particles are also charged positive by co-adsorption of dodecylpyridinium iodide. Furthermore, chlorophyll is ligated with the imidazole function of one of several amphiphiles derived from histamine, which may or may not contain a reducible nitroaromatic group that can serve as primary electron acceptor from photoexcited chlorophyll. The fluorescence quantum yield of chlorophyll on these particles is diminished by self-association of the pigment and by reaction with an oxidizing amphiphile; in the latter case, the quantum yield is correlated with the one-electron redox potential of the amphiphile. Fluorescence-lifetime analysis reveals that most excited singlet states of chlorophyll are quenched rather quickly, and that most of the fluorescence comes from a small fraction of chlorophyll with long lifetime. All preparations sensitize the photoreduction of 5,5′-dithiobis(2-nitrobenzoate) (DTNB) to the water-soluble thiolate by hydrazobenzene. When the amphiphile that ligates chlorophyll is not oxidizing, the quantum yield of photoreduction is unrelated to the fluorescence yield of the particles, but may be related to the degree of self-association of chlorophyll. When the amphiphile that ligates chlorophyll is oxidizing, the kinetics of photoreduction of DTNB require that the electron passes through the primary oxidant to DTNB. Quantum yields for photosensitized reducton of oxidizing amphiphiles in the absence of DTNB have a reversed correlation with redox potential, which can be rationalized in terms of the Marcus theory of electron transfer. All data are most consistently accounted for if the primary photoproduct is an ion pair of chlorophyll and primary oxidant when the latter is available, and a chlorophyll radical ion pair when it is not, both formed by electron transfer from the singlet excited state of chlorophyll.  相似文献   

6.
Abstract— When chlorophyll is adsorbed to polyethylene-tetradecane particles along with ligating amphiphiles, and pheophytin is present also, a slow but irreversible photobleaching of the chlorophyll is observed in suspensions of the particles in aqueous media. It is suggested that the reaction starts by transfer of an electron from singlet excited chlorophyll to pheophytin and concludes by hydration and reduction of the chlorophyll radical cation.  相似文献   

7.
Chlorophyll has been extracted from cyanobacteria. The adsorption of chlorophyll on the surface of colloidal TiO(2) through electrostatic interaction was observed. The apparent association constant (K(app)) of chlorophyll-TiO(2) obtained from absorption spectra is 3.78x10(4)M(-1). The K(app) value of chlorophyll-TiO(2) as determined from fluorescence spectra is 1.81x10(4)M(-1), which matches well with that determined from the absorption spectra changes. These data indicate that there is an interaction between chlorophyll and colloidal TiO(2) nanoparticle surface. The dynamics of photoinduced electron transfer from chlorophyll to the conduction band of colloidal TiO(2) nanoparticle has been observed and the mechanism of electron transfer has been confirmed by the calculation of free energy change (DeltaG(et)) by applying Rehm-Weller equation as well as energy level diagram. Lifetime measurements gave the rate constant (k(et)) for electron injection from the excited state chlorophyll into the conduction band of TiO(2) is 4.2x10(8)s(-1).  相似文献   

8.
As investigated in neutrophils, the very weak luminescence accompanying the arachidonic acid cascade is associated with the lipoxygenase pathway. The emission is dramatically enhanced by energy transfer to chlorophyll a. The number of chlorophyll molecules excited to the fluorescent state per oxygen consumed, (the S1/O2 ratio), equal to the product of the quantum yields of chemiexcitation and of energy transfer, is 5.4 x 10(-6). The quantum yield of chemiexcitation is inferred to be higher than 1 x 10(-3). The two most likely chemiexcitation routes point to triplet conjugated carbonyls as the most likely candidates for the excited species that transfer to chlorophyll. As such the emission intensity may reflect the level of hydroperoxyeicosatetraenoic acid. This is the first case where addition of a biotic substrate to a cellular system results in substantial generation of electronic excited states without any drastic loss of cell viability. Whether the formation of excited states in the arachidonic acid cascade in neutrophils is accidental or has a biological role is an open question.  相似文献   

9.
The first example of a working model of the photosynthetic antenna-reaction center complex, constructed via self-assembled supramolecular methodology, is reported. For this, a supramolecular triad is assembled by axially coordinating imidazole-appended fulleropyrrolidine to the zinc center of a covalently linked zinc porphyrin-boron dipyrrin dyad. Selective excitation of the boron dipyrrin moiety in the boron dipyrrin-zinc porphyrin dyad resulted in efficient energy transfer (k(ENT)(singlet) = 9.2 x 10(9) s(-)(1); Phi(ENT)(singlet) = 0.83) creating singlet excited zinc porphyrin. Upon forming the supramolecular triad, the excited zinc porphyrin resulted in efficient electron transfer to the coordinated fullerenes, resulting in a charge-separated state (k(cs)(singlet) = 4.7 x 10(9) s(-)(1); Phi(CS)(singlet) = 0.9). The observed energy transfer followed by electron transfer in the present supramolecular triad mimics the events of natural photosynthesis. Here, the boron dipyrrin acts as antenna chlorophyll that absorbs light energy and transports spatially to the photosynthetic reaction center, while the electron transfer from the excited zinc porphyrin to fullerene mimics the primary events of the reaction center where conversion of the electronic excitation energy to chemical energy in the form of charge separation takes place. The important feature of the present model system is its relative "simplicity" because of the utilized supramolecular approach to mimic rather complex "combined antenna-reaction center" events of photosynthesis.  相似文献   

10.
The compounds which are discussed in the present review are highly oxidizing Ru(II) complexes, based on various polyazaaromatic ligands, and acting as efficient electron acceptors in the excited state. The photoinduced charge transfer process and the following associated kinetic steps are characterized for the whole series of complexes by quite different techniques and methods. Thus their behaviour in the presence of reductants such as hydroquinone and mononucleotides (guanosine-5′-monophosphate and adenosine-5′-monophosphate) are examined by flash photolysis, spectroelectrochemistry and photoelectrochemistry. It is explained how the light-initiated electron transfer process can be applied for spectral supersensitization of wide band gap SnO2 semiconductor electrodes. Moreover, it is shown that such a knowledge of the behaviour of these photoredox reactions leads to interesting applications of these oxidizing complexes in a biological area, i.e. for the study of nucleic acids. Thus it is illustrated how these compounds can be used as promising photoreagents of DNA. The easy modulation of their size and shape, and their irreversible anchoring on the DNA bases, triggered by the reductive photoelectron transfer process from the guanine bases to the excited complex, allow one to regard these complexes as attractive molecular tools for DNA study and maybe as future possible drugs activatable under visible light.  相似文献   

11.
We demonstrate a possibility of multistep electron transfer in a supramolecular complex adsorbed on the surface of nanocrystalline TiO(2). The complex mimics the function of the tyrosine(Z)() and chlorophyll unit P(680) in natural photosystem II (PSII). A ruthenium(II) tris(bipyridyl) complex covalently linked to a L-tyrosine ethyl ester through an amide bond was attached to the surface of nanocrystalline TiO(2) via carboxylic acid groups linked to the bpy ligands. Synthesis and characterization of this complex are described. Excitation (450 nm) of the complex promotes an electron to a metal-to-ligand charge-transfer (MLCT) excited state, from which the electron is injected into TiO(2). The photogeneration of Ru(III) is followed by an intramolecular electron transfer from tyrosine to Ru(III), regenerating the photosensitizer Ru(II) and forming the tyrosyl radical. The tyrosyl radical is formed in less than 5 micros with a yield of 15%. This rather low yield is a result of a fast back electron transfer reaction from the nanocrystalline TiO(2) to the photogenerated Ru(III).  相似文献   

12.
陶敏莉  刘东志  张敏华  周雪琴 《化学学报》2008,66(10):1252-1258
以5-对氨基苯基-10,15,20-三苯基卟啉及2-苯基-5-(对氨基苯基)-1,3,4-噁二唑为原料合成了系列卟啉-噁二唑二元化合物, 其结构通过1H NMR, ESI-MS, IR, UV-Vis确定. 对合成化合物进行光谱性能测定, 结果表明, 在卟啉与噁二唑混合体系中, 存在着卟啉激发态分子向噁二唑基态分子的分子间电子传递过程, 导致卟啉激发态的荧光猝灭; 在卟啉-噁二唑二元体系中, 315 nm激发下发生了由激发态噁二唑基团至卟啉基团的能量传递, 导致噁二唑基团荧光猝灭, 卟啉基团荧光增强. 420 nm激发下不存在分子内卟啉基团向噁二唑基团的电子回传竞争; 电化学性能测定进一步表明从噁二唑基团向卟啉基团的电子传递是可能的. 因此卟啉-噁二唑二元化合物可能作为一种模型, 模拟光合作用中电子给体至叶绿素之间的电子传递过程.  相似文献   

13.
We report here our systematic studies of the dynamics of four redox states of the flavin cofactor in both photolyases and insect type 1 cryptochromes. With femtosecond resolution, we observed ultrafast photoreduction of oxidized state flavin adenine dinucleotide (FAD) in subpicosecond and of neutral radical semiquinone (FADH(*)) in tens of picoseconds through intraprotein electron transfer mainly with a neighboring conserved tryptophan triad. Such ultrafast dynamics make these forms of flavin unlikely to be the functional states of the photolyase/cryptochrome family. In contrast, we find that upon excitation the anionic semiquinone (FAD(*-)) and hydroquinone (FADH(-)) have longer lifetimes that are compatible with high-efficiency intermolecular electron transfer reactions. In photolyases, the excited active state (FADH(-)*) has a long (nanosecond) lifetime optimal for DNA-repair function. In insect type 1 cryptochromes known to be blue-light photoreceptors the excited active form (FAD(*-)*) has complex deactivation dynamics on the time scale from a few to hundreds of picoseconds, which is believed to occur through conical intersection(s) with a flexible bending motion to modulate the functional channel. These unique properties of anionic flavins suggest a universal mechanism of electron transfer for the initial functional steps of the photolyase/cryptochrome blue-light photoreceptor family.  相似文献   

14.
The femtosecond time evolutions of excited states in zinc phthalocyanine (ZnPC) films and at the interface with TiO2(110) have been studied by using time-resolved two-photon photoelectron spectroscopy (TR-2PPE). The excited states are prepared in the first singlet excited state (S1) with excess vibrational energy. Two different films are examined: ultrathin (monolayer) and thick films of approximately 30 A in thickness. The decay behavior depends on the thickness of the film. In the case of the thick film, TR-2PPE spectra are dominated by the signals from ZnPC in the film. The excited states decay with tau = 118 fs mainly by intramolecular vibrational relaxation. After the excited states cascaded down to near the bottom of the S1 manifold, they decay slowly (tau = 56 ps) although the states are located at above the conduction band minimum of the bulk TiO2. The exciton migration in the thick film is the rate-determining step for the electron transfer from the film to the bulk TiO2. In the case of the ultrathin film, the contribution of electron transfer is more evident. The excited states decay faster than those in the thick film, because the electron transfer competes with the intramolecular relaxation processes. The electronic coupling with empty bands in the conduction band of TiO2 plays an important role in the electron transfer. The lower limit of the electron-transfer rate was estimated to be 1/296 fs(-1). After the excited states relax to the states whose energy is below the conduction band minimum of TiO2, they decay much more slowly because the electron-transfer channel is not available for these states.  相似文献   

15.
Using time-resolved in μS range luminescence spectroscopy, we observed at 20°C the emission of chlorophyll a, pheophytin a and chlorophyll a-lutein mixture solutions. This delayed emission exhibits several maxima in the650–750 nm region. The positions and kinetics of decay of delayed emission bands depend on chlorophyll concentration, and vary as a result of pheophytinization and addition of lutein. Our results can be explained by supposition that upon excitation, charge transfer species are formed in various pigment complexes. The back electron transfer reactions yield chlorophyll excited singlet states contributing to observed delayed emission. Delay in emission seems to be due also to the trapping of excitation on the triplet states of various forms of pigment and its detrapping with the participation of thermal energy followed by energy transfer to the forms of pigment characterized by different decay times.  相似文献   

16.
IntroductionPlatinumand gold surfaces can adsorb a wide vari-ety of ions, atoms and molecular functional groups,which is often accompanied by oxidation-reduction ordissociation of them. Numerous previous works havemade great progress in studying the surfa…  相似文献   

17.
A novel way to produce ultrathin transparent carbon layers on tin‐doped indium oxide (ITO) substrates is developed. The ITO surface is coated with cellulose nanofibrils (from sisal) via layer‐by‐layer electrostatic binding with poly(diallyldimethylammonium chloride) or PDDAC acting as the binder. The cellulose nanofibril‐PDDAC composite film is then vacuum‐carbonised at 500 °C. The resulting carbon films are characterised by atomic force microscopy (AFM), small angle X‐ray scattering (SAXS), wide‐angle X‐ray scattering (WAXS), and Raman methods. Smooth carbon films with good adhesion to the ITO substrate are formed. The electrochemical characterisation of the carbon films is based on the oxidation of hydroquinone and the reduction of benzoquinone in aqueous phosphate buffer media. A modest effect of the cellulose nanofibril‐PDDAC film on the rate of electron transfer is observed. The effect of the film on the rate of electron transfer after carbonisation is more dramatic. For a 40‐layer cellulose nanofibril‐PDDAC film after carbonisation a two‐order of magnitude change in the rate of electron transfer occurs presumably due to a better interaction of the hydroquinone/benzoquinone system with the electrode surface.  相似文献   

18.
Abstract— The photovoltaic effect in ethanolic solutions of chlorophyll a with benzoquinone or hydroquinone has been measured as a function of pH. In acidic media, stable, fast-rising photovoltaic signals of positive sign are obtained. In neutral and basic media, less stable, slower rising photovoltaic signals of negative sign are found. The results in acid media are explained in terms of a photochemical interaction between chlorophyll and either the benzoquinone or hydroquinone producing protons which can then act as the electrode active agent. In basic media, negatively charged radical species, such as the benzoquinone radical-anion, are considered to be the most likely electrode-active species.  相似文献   

19.
The efficiency of the chemical pathway of DNA repair is studied by time-resolved chemically induced dynamic nuclear polarization (CIDNP) using the model system containing guanosyl base radicals, and tryptophan as the electron donor. Radicals were generated photochemically by pulsed laser irradiation of a solution containing the photosensitizer 2,2'-dipyridyl, guanosine-5'-monophosphate, and N-acetyl tryptophan. Depending on the pH of the aqueous solution, four protonation states of the guanosyl radical are formed via electron or hydrogen atom transfer to the triplet excited dye. The rate constants of electron transfer from the amino acid to the guanosyl radical were determined by quantitative analysis of the CIDNP kinetics, which is very sensitive to the efficiency of radical reactions in the bulk, and rate constants vary from (1.0 +/- 0.3) x 10(9) M(-1) s(-1) for the cation and dication radicals of the nucleotide to (1.2 +/- 0.3) x 10(7) M(-1) s(-1) for the radical in its anionic form. They were found to be higher than the corresponding values for electron transfer in the case of N-acetyl tyrosine as the reducing agent.  相似文献   

20.
The temperature- and solvent-dependence of photoinduced electron-transfer reactions in a porphyrin-based donor-bridge-acceptor (DBA) system is studied by fluorescence and transient absorption spectroscopy. Two competing processes occur: sequential and direct superexchange-mediated electron transfer. In a weakly polar solvent (2-methyltetrahydrofuran), only direct electron transfer from the excited donor to the appended acceptor is observed, and this process has weak temperature dependence. In polar solvents (butyronitrile and dimethylformamide), both processes are observed and the sequential electron transfer shows strong temperature dependence. In systems where both electron transfer processes are observed, the long-range superexchange-mediated process is more than two times faster than the sequential process, even though the donor-acceptor distance is significantly larger in the former case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号