首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A computer simulation of proton-ordered ice IX and its proton-disordered analog III (768 molecules, 90 K) was carried out by the molecular dynamics method using Poltev–Malenkov's potential. For ice IX, the differences in the dynamic characteristics of molecules with O(1) and O(2) are much wider than those in the case of ice III. The libration spectrum of ice IX has a number of distinct acute peaks, and the spectrum of ice III is strongly smoothed. These peculiarities are explained by the proton ordering of ice IX and disordering of ice III. The latter is responsible for the great differences in the short- and especially long-range environment of water molecules in ice crystals and hence for the presence of many molecules with different dynamic characteristics. Thus averaging over a large number of different vibrational spectra of molecules leads to a smoothed total spectrum in the case of the proton-disordered crystal modification of ice.  相似文献   

2.
The behavior of structures of H2O crystalline ices Ih, Ic, XI, VII, VIII, VI is studied in molecular dynamics experiment using the potential offered by Poltev and Malenkov. The behavior of the system consisting of one of the two identical interpenetrating, but without any common hydrogen bonds, water frameworks comprising the ice VI structure is also simulated. As a result of simulations, the ice VII structure has collapsed, whereas other systems proved to be stable. The reasons of instability of the ice VII and previously studied ice IV structures in molecular dynamics experiments are discussed. Based on the simulation results of the above-mentioned ices and previous simulation of ices II, III, IX, IV, and XII, the general regularities of dynamic properties of water molecules in crystalline water ices are formulated. Unreliability of results obtained by molecular dynamics in the investigation of self-organizing processes in aqueous systems is shown.  相似文献   

3.
The recent (from 2010 onward) contributions of quasielastic neutron scattering techniques (time of flight, backscattering, and neutron spin echo) to the characterization and understanding of dynamical processes in soft materials based on polymers are analyzed. The selectivity provided by the combination of neutron scattering and isotopic—in particular, proton/deuterium—labeling allows the isolated study of chosen molecular groups and/or components in a system. This opportunity, together with the capability of neutrons to provide space/time resolution at the relevant length scales in soft matter, allows unraveling the nature of the large variety of molecular motions taking place in materials of increasing complexity. As a result, recent relevant works can be found dealing with dynamical process which associated characteristic lengths and nature are as diverse as, for example, phenyl motions in a glassy linear homopolymer like polystyrene and the chain dynamics of a polymer adsorbed on dispersed clay platelets. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

4.
The ortho-hydroxy aryl Schiff base 2-[(E)-(phenylimino)methyl]phenol and its deutero-derivative have been studied by the inelastic incoherent neutron scattering (IINS), infrared (IR) and Raman experimental methods, as well as by Density Functional Theory (DFT) and Density-Functional Perturbation Theory (DFPT) simulations. The assignments of vibrational modes within the 3500–50 cm−1 spectral region made it possible to state that the strong hydrogen bond in the studied compound can be classified as the so-called quasi-aromatic bond. The isotopic substitution supplemented by the results of DFT calculations allowed us to identify vibrational bands associated with all five major hydrogen bond vibrations. Quasi-isostructural polymorphism of 2-[(E)-(phenylimino)methyl]phenol (SA) and 2-[(E)-(phenyl-D5-imino)methyl]phenol (SA-C6D5) has been studied by powder X-ray diffraction in the 20–320 K temperature range.  相似文献   

5.
6.
We have determined a new two‐body interaction potential of water by the inversion of viscosity collision integrals of water vapor and fitted to achieve the Hartree–fock dispersion‐like (HFD‐like) potential function. The calculated two‐body potential generates the thermal conductivity, viscosity, and self‐diffusion coefficient of water vapor in an excellent accordance with experimental data at wide temperature ranges. We have also used a new many‐body potential as a function of temperature and density with the HFD‐like pair‐potential of water to improve the two‐body properties better than the SPC, SPC/E, TIP3P, and TIP4P models. We have also used the new corrected potential to simulate the configurational energy and the melting temperatures of the (H2O)500, (H2O)864, (H2O)2048, and (H2O)6912 ice nanoclusters in good agreement with the previous simulation data using the TIP4P model. The extrapolated melting point at the bulk limit is also in better agreement with the experimental bulk data. The self‐diffusion coefficients for the ice nanoclusters also simulated at different temperatures. © 2017 Wiley Periodicals, Inc.  相似文献   

7.
INS (Inelastic Neutron Scattering) spectrum of methane hydrate was measured on MARI (a direct-geometry chopper spectrometer) at Rutherford Appleton Laboratory, UK. Compared with ice Ih, it is found that the whole spectrum of methane hydrate moves toward high-energy by about 1.5 meV. Using lattice dynamical (LD) technique, computer simulations of methane hydrate were carried out. In the simulations, four potential models (BF, TIP3P, TIP4P, MCY) were employed to calculate the phonon density of states (PDOS). ...  相似文献   

8.
Nonclassical correlations known as entanglement, quantum discord, quantum deficit, measurement‐induced disturbance, quantum Maxwell's demon, etc., may provide novel insights into quantum‐information processing, quantum‐thermodynamics processes, open‐system dynamics, quantum molecular dynamics, and general quantum chemistry. We study a new effect of quantumness of correlations accompanying collision of two distinguishable quantum systems A and B, the latter being part of a larger (interacting) system B + D. In contrast to the common assumption of a classical environment or “demon” D, the quantum case exhibits striking new qualitative features. Here, in the context of incoherent inelastic neutron scattering from H‐atoms which create molecular excitations (vibration, rotation, translation), we report theoretical and experimental evidence of a new phenomenon: a considerably reduced effective mass of H, or equivalently, an anomalous momentum‐transfer deficit in the neutron‐H collision. These findings contradict conventional theoretical expectations even qualitatively, but find a straightforward interpretation in the new theoretical frame under consideration. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
Molecular dynamics simulations were applied to investigate the diffusion behaviors of water molecules at temperatures ranging from 323 to 443 K inside amorphous polyacrylate. The results showed that the simulated diffusion coefficients and activation energies were similar to those of experiments. Moreover, the activation energy of water molecules at high temperatures was higher than that at low temperatures by 3.16 kcal mol?1, which was close to the hydrogen‐bonding energy between water and polyacrylate. An analysis of the experimental desorption curves of water molecules and their activation energies has confirmed that there are two forms of water molecules inside rubbery polyacrylate, namely, free water and bound water. In addition, it has been concluded that bound water molecules move from one polar group of polyacrylate to another, and this is followed by occasional jumps. Simulated information is very helpful in designing new polyacrylate latex systems and optimizing existent polyacrylate systems. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 884–891, 2007  相似文献   

10.
We present results from molecular dynamics simulations of water near structured hydrophobic surfaces. The surface structures reported herein are a planar alkane crystal as a reference and crystals with a hole and a protrusion of approximately 2.5 nm diameter and 0.5 nm depth or height. All indicators show that surface structuring increases the hydrophobicity: The water density is reduced near the structure elements, and the number of residual contacts between water and the surface decreases by about 40 % with respect to the planar surface. Thermodynamic integration shows that the interfacial energy of the structured surfaces is about 7 mJ m(-2) higher for structured surfaces than for the planar surface. The hydrophobicity increases by a similar amount for the hole and the protrusion geometries compared to the planar surface.  相似文献   

11.
We consider the influence of a local, or effective, composition on dynamics in the miscible polymer blend PEO/PMMA. Quasielastic neutron scattering in combination with deuterium labeling is employed to determine characteristic relaxation times of the PEO component over spatial scales from 3 to 10 Å. Information about the distribution of relaxation times is obtained indirectly from the stretching parameters in a stretched exponential fit. We examine the behavior of these parameters with spatial scale and temperature, finding that their variation supports a distribution of PEO mobility in the blend which is far wider than pure PEO and narrows with decreasing temperature for small spatial scales. This is linked to the concept of local compositions defined over varying spatial scales, and indicates that the concept of a local composition, linked to PEO dynamics, is important in this system. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2914–2923, 2005  相似文献   

12.
An extended system Hamiltonian is proposed to perform molecular dynamics (MD) simulation in the grand canonical ensemble. The Hamiltonian is similar to the one proposed by Lynch and Pettitt (Lynch and Pettitt, J Chem Phys 1997, 107, 8594), which consists of the kinetic and potential energies for real and fractional particles as well as the kinetic and potential energy terms for material and heat reservoirs interacting with the system. We perform a nonlinear scaling of the potential energy parameters of the fractional particle, as well as its mass to vary the number of particles dynamically. On the basis of the equations of motion derived from this Hamiltonian, an algorithm has been proposed for MD simulation at constant chemical potential. The algorithm has been tested for the ideal gas, for the Lennard-Jones fluid over a wide range of temperatures and densities, and for water. The results for the low-density Lennard-Jones fluid are compared with the predictions from a truncated virial equation of state. In the case of the dense Lennard-Jones fluid and water our predicted results are compared with the results reported using other available methods for the calculation of the chemical potential. The method is also applied to the case of vapor-liquid coexistence point predictions.  相似文献   

13.
以光滑干摩擦接触平面为对象,利用金属晶体间的强体积效应特征,建立了简化计算静摩擦力的界面势能模型.根据第一性原理的方法模拟得出界面分子势能的变化,通过界面分子势能计算出静摩擦力大小,并将数据结果通过通用黏附能量函数计算出的静摩擦力大小进行验证,也将计算结果与超高真空原子力显微镜试验结果进行对比.最后拟合出最大静摩擦力与法向载荷的线性函数关系,得出摩擦力的数值为真实接触面积的函数,并与法向载荷成正比的结论.从微观上对同种金属材料间库伦摩擦定律进行验证与研究.  相似文献   

14.
The thermal transition of Nafion is studied using a molecular dynamics simulation through a chemically realistic model. Static and dynamic properties of polymer melts with different water contents are investigated over a wide range of temperatures to obtain viscometric and calorimetric glass transition temperatures. The effect of cooling rate of the simulation on the glass transition of the hydrated polymer is also examined within the well‐known Williams–Landel–Ferry (WLF) equation. Variation of relaxation times versus temperature shows a fragile‐to‐strong transition. The hydration level has a significant impact on the static and dynamic properties of the polymer chains and water molecules confined in nanometric spaces between polymer chains. The results of this study are useful to predict the behavior of Nafion for various applications including fuel cells, sensors, actuators, and shape memory devices at different temperatures. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 907–915  相似文献   

15.
甲烷水合物导热系数是甲烷水合物勘探、开采、储运以及其他应用过程中一个十分重要的物理参数.我们采用平衡分子动力学(EMD)方法Green-Kubo理论计算温度203.15~263.15K、压力范围3~100MPa、晶穴占有率为0~1的sI甲烷水合物的导热系数,采用的水分子模型包括TIP4P、TIP4P-Ew、TIP4P-FQ、TIP4P/2005、TIP4P/Ice.研究了主客体分子、外界温压条件等对甲烷水合物导热性能的影响.研究结果显示甲烷水合物的低导热性能由主体分子构建的sI笼型结构决定,而客体分子进入笼型结构后,使得笼型结构导热性能增强,同时进入笼型结构的客体分子越多,甲烷水合物导热性能越强.研究结果还显示在高温区域(T〉TDebye/3)内不同温度作用下,所有sI水合物具有相似的导热规律.压力对导热系数有一定影响,尤其是在较高压力条件下,压力越高,导热系数越大.而在不同温度和不同压力作用过程中,密度的改变对导热系数的增大或减小几乎没有影响.  相似文献   

16.
采用分子动力学模拟研究了荧光分子芘在磺基甜菜碱两性表面活性剂聚集体中的增溶现象.结果表明,芘分子自发地自溶液中增溶进入胶束疏水内核的栅栏层区域.当胶束溶液中芘分子的局部浓度增大时,两个芘分子可以同时增溶进胶束的栅栏层区域,此时两个芘分子形成π-π共轭堆积的激发态络合物.但是由于荧光分子之间的弱兀.兀相互作用,激发态络合物在胶束中是不稳定的,表现为两个芘分子的多次结合和分离.模拟表明,分子动力学方法可以在分子水平上研究荧光探针分子在表面活性剂胶束中的增溶位点,解释荧光分子在胶束中的动力学现象.  相似文献   

17.
The melting processes of different-sized copper nano-clusters supported on graphite (0001) plane are investigated by the molecular dynamics method. In this work, the melting point is predicted through the caloric curve. The simulation results show that the melting point of the supported copper nano-cluster is higher than that of the isolated one with the same Cu atoms. In the heating process, the copper nano-particle will adhere to the (0001) face of graphite with its (111) face. Pair analysis results show that the copper atoms close to the graphite can keep with order arrangement even when the temperature is higher than the melt point of the isolated nano-cluster.  相似文献   

18.
Single wall carbon nanotubes (SWCNTs) often aggregate into bundles of hundreds of weakly interacting tubes. Their cross-polymerization opens new possibilities for the creation of new super-hard materials. New mechanical and electronic properties are expected from these condensed structures, as well as novel potential applications. Previous theoretical results presented geometric modifications involving changes in the radial section of the compressed tubes as the explanation to the experimental measurements of structural changes during tube compression. We report here results from molecular dynamics simulations of the SWCNTs polymerization for small diameter arm chair tubes under compression. Hydrostatic and piston-type compression of SWCNTs have been simulated for different temperatures and rates of compression. Our results indicate that large diameter tubes (10,10) are unlike to polymerize while small diameter ones (around 5 A) polymerize even at room temperature. Other interesting results are the observation of the appearance of spontaneous scroll-like structures and also the so-called tubulane motifs, which were predicted in the literature more than a decade ago.  相似文献   

19.
The surface melting process of structure sI methane hydrate is simulated at T = 240, 260, 280, and 300 K using NVT molecular dynamics method. The simulation results show that a quasi-liquid layer will be formed during the melting process. The density distribution, translation, orientation, and dynamic properties of water molecules in the quasi-liquid layer are calculated as a function of the distance normal to the interface, which indicates the performance of quasi-liquid layer exhibits a continuous change from crystal-like to liquid-like. The quasi-liquid layer plays as a resistance of mass transfer restraining the diffusion of water and methane molecules during the melting process. The resistance of quasi-liquid layer will restrain methane molecules diffuse from hydrate phase to gas phase and slow the melting process, which can be considered as a possible mechanism of self-preservation effect. The performance of quasi-liquid layer is more crystal-like when the temperature is lower than the melt- ing-point of water, which will exhibit an obvious self-preservation. The self-preservation will weaken while the temperature is higher than the melting-point of water because of the liquid-like performance of the quasi-liquid layer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号